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RESUMO 

 

A evolução da ciência e da tecnologia possibilitou a construção de sistemas 

mecânicos cada vez mais complexos e detalhados. Para criar modelos numéricos que 

representassem adequadamente esses sistemas e sua crescente complexidade, tornou-se 

necessário o desenvolvimento de ferramentas que gerassem de forma automática as 

equações de movimento. Foi dentro desse contexto que, a partir da década de 1980, 

ganharam espaço no universo das análises dinâmicas os sistemas multicorpos 

(multibody systems – MBS). 

Originalmente, a técnica de multicorpos foi desenvolvida para gerar o modelo 

matemático de qualquer sistema mecânico que pudesse ser modelado fisicamente como 

um conjunto de corpos rígidos. Recentemente, com o avanço das tecnologias de 

processamento e armazenamento de dados, permitiu-se também a inclusão de corpos 

flexíveis (deformáveis) nos modelos. Todos esses corpos são interligados por juntas, 

influenciados por forças, direcionados por movimentos prescritos e limitados por 

restrições. 

Com as facilidades introduzidas principalmente com as interfaces gráficas, os 

softwares ficaram muito mais acessíveis passando a falsa sensação de que os 

fundamentos teriam agora menor importância o que é extremamente perigoso no 

tratamento do problema. 

Por outro lado os fundamentos teóricos, bastante consolidados em relação aos 

sistemas multicorpos, são apresentados ainda da forma tradicional sem buscar uma 

ligação com as ferramentas modernas que estão surgindo. 

O propósito deste trabalho é então compreender e fazer uso de uma base 

teórica de multicorpos aliada a ferramentas computacionais para estudo de um modelo 

de uma perna bi articulada com partes flexíveis com vistas para aplicações em modelos 

bípedes. 
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ABSTRACT 

 

The evolution of science and technology enabled the construction of 

mechanical systems increasingly complex and detailed. To create numerical models to 

adequately represent these systems and their increasing complexity, it became necessary 

to develop tools that automatically generate the equations of motion. It was within this 

context that, from the 1980s, gained ground in the universe of multibody dynamic 

analysis systems (multibody systems - MBS). 

Originally, the technique was developed to generate the mathematical model of 

any mechanical system that could be physically modeled as a set of rigid bodies. 

Recently, the advancing technologies of processing and storage of data, also allowed the 

inclusion of flexible bodies (deformable) models. All these bodies are connected by 

joints, influenced by forces, driven by movements prescribed and limited by 

restrictions. 

With the facilities introduced mainly with graphical interfaces, the software 

became more accessible through a false sense that the foundations have now minor 

importance which is extremely dangerous to treat the problem. 

On the other hand the theoretical, rather consolidated in relation to multibody 

systems, are also presented in the traditional manner without seeking a connection with 

the modern tools that are emerging. 

The purpose of this paper is to understand and make use of all the theoretical 

basis of multibody combined with computational tools to study a model of a leg bi-

articulated and flexible parts with a view to applications in bipedal models. 
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1 INTRODUÇÃO 

O termo multicorpos se destaca como um termo genérico que engloba uma 

ampla gama de sistemas tais como mecanismos, automóveis e caminhões (incluindo 

sistemas de direção, suspensões, etc.), robôs, trens, máquinas industriais (têxtil, de 

embalagens, etc.), estruturas espaciais, antenas, satélites, o corpo humano, entre outros. 

Com o aumento do poder de cálculo e redução nos custos, o uso do 

computador para simulação cinemática e dinâmica tem emergido como uma poderosa 

ferramenta para a análise e projeto de sistemas multicorpos em ramos como a indústria 

automobilística, aeroespacial, da robótica, máquinas, biomecânica, entre outros. 

A atenção recebida recentemente pode ser medida pela quantidade de 

programas CAE (Computer Aided Engineering) que se proliferam no mercado de 

engenharia, um fenômeno semelhante ao produzido pelo método dos elementos finitos 

no início dos anos oitenta para projetos estruturais. Formulações eficazes para a 

dinâmica e confiáveis métodos computacionais desempenham um papel fundamental na 

concretização da confiabilidade das ferramentas de análise multicorpos [1]. 

Reduções do tempo de projeto e dos custos envolvidos principalmente pela 

diminuição da quantidade de protótipos físicos construídos e que agora têm foco na 

validação da simulação computacional além da possibilidade de otimização das 

soluções são os grandes atrativos para a indústria. 

Pelo rápido surgimento das ferramentas de análise multicorpos criou-se um 

vácuo de mão de obra capacitada para fazer proveito da nova tecnologia, principalmente 

em nosso país. 

Os programas de análise multicorpos vêm sendo aprimorados no sentido de 

permitir uma interface mais amigável e intuitiva para o usuário. Há poucos anos se quer 

existiam interfaces gráficas na análise computacional o que exigia do usuário, além da 

habilidade em operar o programa, um conhecimento mais aprofundado dos fundamentos 

teóricos, tanto para implementar o problema quanto para interpretar os resultados. 

Com as facilidades introduzidas principalmente com as interfaces gráficas, os 

softwares ficaram muito mais acessíveis passando a falsa sensação de que os 
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fundamentos teriam agora menor importância o que é extremamente perigoso no 

tratamento do problema. 

É preciso saber prever resultados, conhecer as limitações e operar com os 

parâmetros de simulação para obter uma correlação aceitável com a realidade. 

Por outro lado os fundamentos teóricos, bastante consolidados em relação aos 

sistemas multicorpos, são apresentados ainda da forma tradicional sem buscar uma 

ligação com as ferramentas modernas que estão surgindo. 

Um propósito deste trabalho é então construir um material que sirva de base 

para o início na área de dinâmica multicorpos, apresentando de forma sintética os 

fundamentos teóricos da dinâmica e também do cálculo computacional fazendo uma 

ligação direta com os principais recursos e capacidades da análise computacional da 

dinâmica multicorpos. 

2 OBJETIVO 

O objetivo deste trabalho é estudar um modelo de pêndulo duplo com vistas a 

um modelo bípede e compreender as técnicas de multicorpos desde o fenômeno físico, 

passando pela modelagem matemática, métodos de solução, finalizando com a 

implementação em um programa comercial de multicorpos. 

Desta forma serão expostos os passos mais relevantes para solução de um 

problema de multicorpos, como modelamento em espaço de estado, integração 

numérica, determinação de freqüências naturais do sistema, componentes e será feita 

uma introdução ao uso de corpos flexíveis em sistemas multicorpos. 

3 ESTADO DA ARTE 

Os problemas de multicorpos são resolvidos usando a abordagem de divisão 

para simplificação, ou seja, fragmentar sistemas complexos em blocos mais simples, e 

então em blocos ainda mais simples, e assim por diante. Os problemas de síntese são 

resolvidos começando com blocos conhecidos, e procurando formas de colocá-los em 

conjunto para alcançar comportamentos complexos.  



 

 

3.1 PROBLEMAS TÍPICOS

Profissionais da indústria muitas vezes queixam

usados sem a devida atenção. Com 

se o porquê de empregar o tempo e esforço, além de dinheiro, com o uso dessas 

ferramentas se os resultados não ajudam o engenheiro. Para piorar a situação, o uso das 

ferramentas pode até mesmo dar respostas longe da

essa crítica potencial de ferramentas CAE se aplica a todas as ferramentas 

computacionais. A modelagem do problema e interpretação dos resultados deve ser 

muito criteriosa. Assim, antes de rever a teoria, é útil vermos algumas áreas de 

aplicação e as questões relevantes para

3.2 ALGUMAS ÁREAS DE APLI

Máquinas operatrizes

Figura 

Máquinas operatrizes no que tange sua parte mecânica são 

consideradas como uma tecnologia ultrapassada, que em certo sentido, elas até são, pois 

o crescimento da utilização dessas máquinas remete principalmente aos anos entre 1860 

e 1960. Mas isso não significa que a tecnologia é trivial ou que proj

simples. Comum a todas elas, há um objetivo principal: um grau de precisão 

especificado. Para isso, o mecanismo deve produzir movimentos variáveis e permitir o 

controle sobre esses movimentos. Condições de operação podem geralme

mantidas dentro de uma gama especificada

ROBLEMAS TÍPICOS  

Profissionais da indústria muitas vezes queixam-se de que os softwares são 

usados sem a devida atenção. Com freqüência essas queixas são justificadas. 

empregar o tempo e esforço, além de dinheiro, com o uso dessas 

ferramentas se os resultados não ajudam o engenheiro. Para piorar a situação, o uso das 

ferramentas pode até mesmo dar respostas longe das metas de projeto reais. Claro que

ial de ferramentas CAE se aplica a todas as ferramentas 

computacionais. A modelagem do problema e interpretação dos resultados deve ser 

muito criteriosa. Assim, antes de rever a teoria, é útil vermos algumas áreas de 

aplicação e as questões relevantes para a modelagem e análise da dinâmica multicorpos.

LGUMAS ÁREAS DE APLI CAÇÃO 

Máquinas operatrizes 

Figura 3-1 - Aplicação de multicorpos em manufatura 

Máquinas operatrizes no que tange sua parte mecânica são 

consideradas como uma tecnologia ultrapassada, que em certo sentido, elas até são, pois 

o crescimento da utilização dessas máquinas remete principalmente aos anos entre 1860 

e 1960. Mas isso não significa que a tecnologia é trivial ou que projetá-

simples. Comum a todas elas, há um objetivo principal: um grau de precisão 

especificado. Para isso, o mecanismo deve produzir movimentos variáveis e permitir o 

controle sobre esses movimentos. Condições de operação podem geralme

mantidas dentro de uma gama especificada, particularmente se o projetista puder 
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essas queixas são justificadas. Questiona-

empregar o tempo e esforço, além de dinheiro, com o uso dessas 

ferramentas se os resultados não ajudam o engenheiro. Para piorar a situação, o uso das 
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ial de ferramentas CAE se aplica a todas as ferramentas 
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a modelagem e análise da dinâmica multicorpos. 

 

Máquinas operatrizes no que tange sua parte mecânica são muitas vezes 

consideradas como uma tecnologia ultrapassada, que em certo sentido, elas até são, pois 

o crescimento da utilização dessas máquinas remete principalmente aos anos entre 1860 

-las é uma tarefa 

simples. Comum a todas elas, há um objetivo principal: um grau de precisão 

especificado. Para isso, o mecanismo deve produzir movimentos variáveis e permitir o 

controle sobre esses movimentos. Condições de operação podem geralmente ser 

, particularmente se o projetista puder 



 

 

demonstrar uma ligação entre as condições de funcionamento e a precisão da máquina. 

Questões típicas em um projeto deste tipo de equipamento são sua vida útil e o seu 

custo. Do ponto da dinâmica de multicorpos, os modelos podem calcular e prever 

forças, localização de vários pontos ao longo do tempo e duração de operações.

Máquinas de embalagens

Esta classe abrange as máquinas que podem fazer operações tais como 

acondicionamento, rotulagem, dobra empilhamento e impressão.

quase todos os bens desde a pasta de dentes até os automóveis devem ser embalados, o 

tamanho desta indústria é destacável. As preocupações ambientais estão levando a 

mudanças nos materiais utilizados, o que forçou os desenvolvedores a exercerem a sua 

criatividade. De um ponto de vista distante, as máquinas de embalagem são semelhante 

às máquinas operatrizes. As condições de operação devem ser controladas e o 

movimento preciso e automático. A

uso. Máquinas de embalagem aplicam

o volume de produção é extremamente alto. Isto significa que a abordagem do projeto 

muitas vezes pode sacrificar a versat

E uma vez que a escala de produção das mercadorias a serem embalados é muito 

grande, o projeto centra-se no tempo de movimento. Um projeto que reduz o tempo de 

enchimento em um segundo pode ser muito atraent

pacote é da ordem de segundos. Na indústria farmacêutica, por exemplo, velocidades de 

200.000 cápsulas por hora não são incomuns.

Motores a combustão

Figura 3-

O projeto de um motor a combustão é uma área multidisciplinar que abrange 

transferência de calor, combustão, vibrações, etc.. As condições de operação são menos 

demonstrar uma ligação entre as condições de funcionamento e a precisão da máquina. 

Questões típicas em um projeto deste tipo de equipamento são sua vida útil e o seu 

o ponto da dinâmica de multicorpos, os modelos podem calcular e prever 

forças, localização de vários pontos ao longo do tempo e duração de operações.

Máquinas de embalagens 

Esta classe abrange as máquinas que podem fazer operações tais como 

o, rotulagem, dobra empilhamento e impressão. Se considerarmos que 

quase todos os bens desde a pasta de dentes até os automóveis devem ser embalados, o 

tamanho desta indústria é destacável. As preocupações ambientais estão levando a 

utilizados, o que forçou os desenvolvedores a exercerem a sua 

criatividade. De um ponto de vista distante, as máquinas de embalagem são semelhante 

às máquinas operatrizes. As condições de operação devem ser controladas e o 

movimento preciso e automático. As diferenças decorrem, principalmente, da escala de 

uso. Máquinas de embalagem aplicam-se principalmente para a produção de itens onde 

o volume de produção é extremamente alto. Isto significa que a abordagem do projeto 

muitas vezes pode sacrificar a versatilidade do movimento para a economia e precisão. 

E uma vez que a escala de produção das mercadorias a serem embalados é muito 

se no tempo de movimento. Um projeto que reduz o tempo de 

um segundo pode ser muito atraente se o tempo de enchimento por 

pacote é da ordem de segundos. Na indústria farmacêutica, por exemplo, velocidades de 

200.000 cápsulas por hora não são incomuns. 

Motores a combustão 

 

-2 - Aplicação de multicorpos a motores a combustão 

O projeto de um motor a combustão é uma área multidisciplinar que abrange 

transferência de calor, combustão, vibrações, etc.. As condições de operação são menos 
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demonstrar uma ligação entre as condições de funcionamento e a precisão da máquina. 

Questões típicas em um projeto deste tipo de equipamento são sua vida útil e o seu 

o ponto da dinâmica de multicorpos, os modelos podem calcular e prever 

forças, localização de vários pontos ao longo do tempo e duração de operações. 

Esta classe abrange as máquinas que podem fazer operações tais como 

Se considerarmos que 

quase todos os bens desde a pasta de dentes até os automóveis devem ser embalados, o 

tamanho desta indústria é destacável. As preocupações ambientais estão levando a 

utilizados, o que forçou os desenvolvedores a exercerem a sua 

criatividade. De um ponto de vista distante, as máquinas de embalagem são semelhante 

às máquinas operatrizes. As condições de operação devem ser controladas e o 

s diferenças decorrem, principalmente, da escala de 

se principalmente para a produção de itens onde 

o volume de produção é extremamente alto. Isto significa que a abordagem do projeto 

ilidade do movimento para a economia e precisão. 

E uma vez que a escala de produção das mercadorias a serem embalados é muito 

se no tempo de movimento. Um projeto que reduz o tempo de 

e se o tempo de enchimento por 

pacote é da ordem de segundos. Na indústria farmacêutica, por exemplo, velocidades de 

O projeto de um motor a combustão é uma área multidisciplinar que abrange 

transferência de calor, combustão, vibrações, etc.. As condições de operação são menos 
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previsíveis do que para as máquinas citadas anteriormente, então os engenheiros muitas 

vezes têm de investigar e permitir operações severas. Gamas recomendadas de operação 

são normalmente fornecidas, tal como o limite de rotação "red-line" para motores de 

combustão interna. De uma perspectiva da dinâmica multicorpos, a rotação de “red-

line” é um parâmetro interessante. Se um motor de 4 tempos funciona a uma velocidade 

superior à recomendada, a força exercida sobre as molas de retorno das válvulas pode 

ser alta o suficiente para que elas não retornem no tempo desejado, fenômeno conhecido 

como "float". Isto, por sua vez, leva à perda de rendimento. 

O interesse de uma análise de multicorpos está ligado ao cálculo de forças nos 

componentes em várias condições de operação. Estas forças são então utilizadas para 

realizar o cálculo de tensões e verificações de fadiga. Motores modernos também 

exigem formas bastante sofisticadas de controle de movimento. Motores de alto 

desempenho, por exemplo, podem alterar os tempos de abertura das válvulas em função 

da condição de operação do motor. 

Veículos, aviões, trens, navios... 

 

Figura 3-3 - Aplicação de multicorpos a um veículo completo 

Agrupar carros, caminhões, ônibus, motocicletas, bicicletas, navios, aviões e 

naves espaciais em um grupo é, obviamente, uma simplificação, mas que é bastante 

apropriada a partir de da perspectiva de multicorpos. Os graus de complexidade variam 

de uma dúzia de peças em uma bicicleta para milhares de peças em veículos maiores. 

Esses veículos têm, porém, exigências bastante similares: estabilidade, conforto, 

segurança e (na maioria, mas não em todos os casos) economia de operação. O primeiro 



 

 

requisito, a estabilidade, é de particular interesse. Uma vez que as condições de 

funcionamento tendem a variar largamente, um grande esforço é feito para proporcionar 

um controle eficaz sobre o comportamento do veículo. Lembrando que o movimento é 

razoavelmente previsível. O que é imprevisível são os comandos que o condutor aplica, 

as condições que a pista fornece, e assim por diante. Projetos modernos têm tido um 

aumento constante na quantidade de eletrônica embarcada usada para ajudar a conduzir 

o veículo com segurança. 

Robótica 

Figura 

A parte mecânica de um robô é o problema clássico de síntese de mecanismos, 

ou seja, como montar elementos mecânicos que podem descrever 

determinados. Em vários casos, a inspiração é traçada a partir da biologia, 

assemelhando-se a articulações humanas ou de animais. Deve

movimentos, predizer a velocidade de diferentes partes do conjunto e prever as forças

que serão experimentadas e que podem ser gerada pelo robô. Um elevado grau de 

integração com sistemas de controle eletrônico também é essencial dado o estado atual 

da tecnologia da robótica. 

3.3 MODELAMENTO COM MULTI

Num projeto de um produto com certo 

distintas podem ser feitas: a primeira sobre o comportamento de um componente e a 

outra sobre a perspectiva da dinâmica de um sistema. É preciso entender claramente 

suas diferenças, bem como a interação que existe entr

comportamento do componente é muitas vezes feita usando ferramentas baseadas no 

método dos elementos finitos. É, portanto, necessário conhecer os carregamentos que 

bilidade, é de particular interesse. Uma vez que as condições de 

funcionamento tendem a variar largamente, um grande esforço é feito para proporcionar 

um controle eficaz sobre o comportamento do veículo. Lembrando que o movimento é 

. O que é imprevisível são os comandos que o condutor aplica, 

as condições que a pista fornece, e assim por diante. Projetos modernos têm tido um 

aumento constante na quantidade de eletrônica embarcada usada para ajudar a conduzir 

Figura 3-4 - Aplicação de multicorpos em automação 

A parte mecânica de um robô é o problema clássico de síntese de mecanismos, 

ou seja, como montar elementos mecânicos que podem descrever movimentos pré

determinados. Em vários casos, a inspiração é traçada a partir da biologia, 

se a articulações humanas ou de animais. Deve-se, então, traçar os 

movimentos, predizer a velocidade de diferentes partes do conjunto e prever as forças

que serão experimentadas e que podem ser gerada pelo robô. Um elevado grau de 

integração com sistemas de controle eletrônico também é essencial dado o estado atual 

ODELAMENTO COM MULTI CORPOS 

Num projeto de um produto com certo grau de complexidade, duas abordagens 

distintas podem ser feitas: a primeira sobre o comportamento de um componente e a 

outra sobre a perspectiva da dinâmica de um sistema. É preciso entender claramente 

suas diferenças, bem como a interação que existe entre elas. A análise do 

comportamento do componente é muitas vezes feita usando ferramentas baseadas no 

método dos elementos finitos. É, portanto, necessário conhecer os carregamentos que 
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bilidade, é de particular interesse. Uma vez que as condições de 

funcionamento tendem a variar largamente, um grande esforço é feito para proporcionar 

um controle eficaz sobre o comportamento do veículo. Lembrando que o movimento é 

. O que é imprevisível são os comandos que o condutor aplica, 

as condições que a pista fornece, e assim por diante. Projetos modernos têm tido um 

aumento constante na quantidade de eletrônica embarcada usada para ajudar a conduzir 

 

A parte mecânica de um robô é o problema clássico de síntese de mecanismos, 

movimentos pré-

determinados. Em vários casos, a inspiração é traçada a partir da biologia, 

se, então, traçar os 

movimentos, predizer a velocidade de diferentes partes do conjunto e prever as forças 

que serão experimentadas e que podem ser gerada pelo robô. Um elevado grau de 

integração com sistemas de controle eletrônico também é essencial dado o estado atual 

grau de complexidade, duas abordagens 

distintas podem ser feitas: a primeira sobre o comportamento de um componente e a 

outra sobre a perspectiva da dinâmica de um sistema. É preciso entender claramente 
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comportamento do componente é muitas vezes feita usando ferramentas baseadas no 

método dos elementos finitos. É, portanto, necessário conhecer os carregamentos que 
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servem de condição de contorno para este tipo de análise. Já o estudo do 

comportamento do sistema é melhor realizado usando a abordagem de multicorpos. 

Uma vantagem é que as forças calculadas a partir de uma análise de multicorpos podem 

ser usadas para fornecer dados para uma análise do componente. Modelos de 

multicorpos trazem uma perspectiva simplificada do componente. Ele pode, por 

exemplo, ser representado apenas como um corpo rígido trazendo apenas informações 

de suas inércias e centro de massa, por mais complexa que seja a sua geometria. Neste 

caso os cálculos envolvidos ficam bastante simplificados, pois envolvem as leis de 

Newton e seus formalismos decorrentes. Computacionalmente, enquanto uma análise de 

elementos finitos pode demorar desde minutos até dias, uma análise de multicorpos 

normalmente leva segundos para o cálculo. 

A abordagem de modelos complexos construídos a partir de modelos mais 

simples é a essência dos sistemas de multicorpos. 

3.4 TEORIA BÁSICA  

No passado, a obtenção das equações dinâmicas de movimentos para sistemas 

mecânicos era realizada manualmente, através da aplicação de princípios físicos em 

suas variadas formas [2]. 

Partindo-se das Leis de Newton, foram desenvolvidas várias maneiras de se 

obter essas equações que representam o comportamento dinâmico de um sistema 

mecânico. A evolução histórica dessas teorias aconteceu de forma gradual, sendo que 

seus principais fatos são resumidos na Tabela 3-1. 

Tabela 3-1 - Histórico evolutivo das teorias e princípios utilizados em dinâmica 
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A evolução da ciência e da tecnologia, por outro lado, possibilitou a construção 

de sistemas mecânicos cada vez mais complexos e detalhados. Para criar modelos 

numéricos que representassem adequadamente esses sistemas e sua crescente 

complexidade, tornou-se necessário o desenvolvimento de ferramentas que gerassem de 

forma automática as equações de movimento. Foi dentro desse contexto que, a partir da 

década de 1980, ganharam espaço no universo das análises dinâmicas os sistemas 

multicorpos (multibody systems – MBS). De forma semelhante à década anterior, 

quando o método de elementos finitos rapidamente difundiu-se para as análises 

estruturais, repetia-se para a técnica de MBS o fenômeno de popularização, dessa vez 

para as análises transientes. 

Originalmente, a técnica de multicorpos foi desenvolvida para gerar o modelo 

matemático de qualquer sistema mecânico que pudesse ser modelado fisicamente como 

um conjunto de corpos rígidos. Recentemente, com o avanço das tecnologias de 

processamento e armazenamento de dados, permitiu-se também a inclusão de corpos 

flexíveis (deformáveis) nos modelos. Todos esses corpos são interligados por juntas, 

influenciados por forças, direcionados por movimentos prescritos e limitados por 

restrições. 

3.5 DEFINIÇÕES  

3.5.1.1 Estática, Cinemática e Dinâmica 

A mecânica pode ser dividida em três ramos: estática, dinâmica e cinemática. 

A estática abrange os efeitos das forças sobre os corpos na ausência de movimento. A 

dinâmica é o estudo da ação das forças sobre os corpos em movimento. A cinemática é 

o estudo do movimento relativo entre os corpos. Muitas vezes é utilizada a cinemática 

para determinar o projeto inicial para atingir o movimento desejado e não há nenhuma 

referência à massa ou forças. Por exemplo, pode ser utilizada para calcular o movimento 

necessário para um robô para realizar certa tarefa. Enquanto a dinâmica pode prever as 

forças necessárias para este movimento [3]. 

3.5.1.2 Mecanismo 

Denomina-se mecanismo a um conjunto de elementos rígidos, móveis uns 

relativamente a outros, unidos entre si mediante diferentes tipos de junções, chamadas 
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pares cinemáticos, cujo propósito é a transmissão e/ou transformação de movimentos e 

forças. São, portanto, as abstrações teóricas do funcionamento dos sistemas reais. 

3.5.1.3 Conservação da quantidade de movimento linear 

Na ausência de forças externas, a velocidade de um corpo ou um conjunto de 

corpos permanece constante. Quando aplicada uma força, a relação com a aceleração é 

representada pela equação F = ma. Outra forma de descrever é dizer que a força 

envolvida numa colisão é igual à taxa de variação do momento. Colisões podem ser 

elásticas ou inelásticas. Colisões elásticas conservam a energia cinética, mas colisões 

inelásticas não. Ambas, naturalmente, conservam o impulso. O coeficiente de restituição 

é uma medida da elasticidade da colisão. Ele é adimensional, uma vez que é a razão 

entre as diferenças nas velocidades antes da colisão e depois da colisão, sendo 1 para 

uma colisão perfeitamente elástica e 0 para uma colisão inelástica. 

3.5.1.4 Conservação do momento angular 

A lei da conservação da quantidade de momento linear quando aplicada ao 

movimento angular, conduz a equação T = I α, onde T é o binário, I é o momento de 

inércia em torno do eixo de rotação, e α é a aceleração angular. 

3.5.1.5 Graus de Liberdade 

Graus de liberdade é um termo genérico utilizado em referência a quantidade 

mínima de números reais necessários para determinar completamente o estado físico de 

um dado sistema. 

Calcular o número de graus de liberdade de um mecanismo não é uma tarefa 

trivial, como veremos adiante quando discutirmos as equações de Gruebler. Um corpo 

rígido no espaço tridimensional tem 6 graus de liberdade, ou seja, translação ao longo 

dos 3 eixos, e rotações sobre os 3 eixos. 

3.5.1.6 Restrições  

Uma restrição é uma condição que remove um ou mais graus de liberdade. Em 

multicorpos, uma restrição é geralmente imposta definindo uma junta. Por exemplo, se 

um sistema consiste de 2 corpos que não estão ligados um ao outro, o sistema tem 12 

graus de liberdade (6 para cada corpo). Se eles estão ligados por uma junta, no entanto, 

o número de graus de liberdade será inferior a 12. Se o número de restrições é mais do 

que os graus de liberdade do sistema, ele é descrito como sobrerrestrito. Um sistema 
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excessivamente restrito normalmente não pode ser usado em uma análise de 

multicorpos. Computacionalmente os softwares de multicorpos descartam as restrições 

desnecessárias. 

3.5.1.7 Articulações ou juntas 

Do ponto de vista matemático, uma junta é apenas uma restrição que relaciona 

o movimento entre um ou mais graus de liberdade de um ou mais corpos. No contexto 

da modelagem multicorpos, uma articulação é geralmente definida utilizando um 

equivalente físico. A maioria das juntas elimina um ou mais graus de liberdade. No 

entanto, se a junta é redundante, ela não afeta os graus de liberdade do sistema. Juntas 

redundantes também são chamadas de juntas passivas e sua presença ou ausência não 

faz qualquer diferença para o comportamento do mecanismo. 

3.5.1.8 Equação Gruebler e o Critério Kutzbach 

Calcular os graus de um sistema muitas vezes não é uma tarefa fácil. Se o 

movimento se restringe a um plano (isto é, se temos um mecanismo planar), podemos 

usar a Equação de Gruebler:  F = 3 (n-1)-2l-h, onde F são os graus de liberdade totais do 

mecanismo, n é o número de juntas , l é o número de pares de inferiores e H é o número 

de pares mais elevadas. Deve-se ter cuidado ao usar a fórmula, ela não é infalível no 

sentido de que não pode ser aplicada cegamente, mas precisa de algum julgamento. 

3.5.1.9 Tipos de Análise 

Com base nas entradas de simulação do modelo, os softwares de multicorpos 

formulam as equações de movimento que caracterizam o sistema. Os diversos tipos de 

simulação se referem ao processo de resolver estas equações computacionalmente. 

Os softwares de multicorpos fornecem basicamente os seguintes tipos de 

simulação: 

Transiente 

Pode ser realizada em sistemas com zero ou mais graus de liberdade. Para 

sistemas com zero grau de liberdade, a simulação cinemática é usada. Para sistemas 

com mais do que zero graus de liberdade, a simulação dinâmica é usado. 

Cinemática 
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Um modelo com zero graus de liberdade é definido como cinemático. As 

equações algébricas que definem as restrições impostas por várias articulações e 

movimentos aplicados especificam completamente o movimento do sistema. As 

restrições de tempo e seus derivados são usados para calcular o deslocamento, 

velocidade e acelerações. As equações de equilíbrio de força são utilizadas para calcular 

algebricamente as forças de reação de restrição. A solução é, portanto, de natureza 

algébrica. 

Dinâmica 

A simulação dinâmica refere-se à integração numérica das equações 

diferenciais ordinárias e diferenciais algébricas. As equações algébricas resultam das 

restrições no modelo. É aplicável aos modelos com um ou mais graus de liberdade. 

Ela considera as acelerações (linear, angular, centrífuga e de Coriolis), forças e 

restrições. Em outras palavras, ela resolve as equações do movimento em sua forma 

mais geral, incluindo os efeitos não lineares. Isto permite nos desenvolver simulações 

precisas de complexos sistemas mecânicos. 

Simulação Estática 

A simulação estática é útil para encontrar as configurações de equilíbrio para 

os modelos com um ou mais graus de liberdade. O equilíbrio é definido como a 

configuração onde todas as forças e momentos agindo em todas as partes do modelo são 

iguais a zero. Dois métodos comuns para a simulação estática são o Maximum Kinetic 

Energy Attrition Method (MKEAM) e o Force Imbalance Method (FIM) 

Quasi-Estatica 

Fisicamente o método quasi-estático significa que o sistema está sendo 

conduzido muito lentamente de modo a não exercer qualquer dinâmica transitória. 

Matematicamente, a simulação quasi-estática é uma seqüência de simulações 

estáticas realizadas durante um período determinado. O método é útil quando o modelo 

contém forças dependentes do tempo e estamos interessados na seqüência de 

configurações de equilíbrio que o modelo passa. 

Linear 
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Sistemas multicorpos quase sempre são não-lineares. Não-linearidades podem 

surgir a partir de elementos de forças com relações constitutivas não lineares, restrições 

ou cinemática. Em geral, os sistemas não-lineares são notoriamente difíceis de analisar. 

Em estudos de sistemas de controle, por exemplo, pode ser útil trabalhar com o modelo 

linearizado. Os softwares de multicorpos normalmente trazem ferramentas que 

permitem extrair as matrizes do modelo linearizado. 

3.5.1.10 Integração Numérica 

A equação diferencial de movimento é a seguinte: 

Ma+cv+ku=f(t) 

Onde, m é a massa, c o amortecimento, k a rigidez e a, v e u são aceleração, 

velocidade e deslocamento. 

Dado o estado inicial do corpo ou corpos, precisamos calcular os estados dos 

corpos ao longo do tempo. Isto é feito por integração numérica da equação de 

movimento. 

4 METODOLOGIAS  DE SOLUÇÃO DO PROBLEMA  PROPOSTO 

Será proposto o estudo de um problema real de forma a apresentar todas as 

etapas idealizadas para o desenvolvimento deste trabalho. A partir da apresentação desta 

estrutura de abordagem, cada etapa será então descrita e explorada com maior 

profundidade. 

O fluxo é apresentado a seguir. 

 



 

 

Figura 

 

 

Modelamento em ambiente multicorpos

Rigidez e frequências do componente

Modelamento em ambiente multicorpos 

Figura 4-1 – Fluxo das soluções usadas neste trabalho 
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Integração Numérica

Modelamento em ambiente multicorpos

(Corpos Rígidos)

Rigidez e frequências do componente

Modelamento em ambiente multicorpos 
(componente flexível)
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4.1 FERRAMENTAS UTILIZADAS  

A fase inicial deste projeto está focada em definirmos uma forma de 

abordagem para o tratamento de problemas de dinâmica multicorpos além nos 

familiarizarmos com algumas das ferramentas computacionais disponíveis. 

Podemos citar aqui três programas que nos ajudam nesta caminhada. 

O primeiro deles é o Mathematica desenvolvido pela Wolfram capaz de 

auxiliar no desenvolvimento e solução de equações com termos literais. Trata-se de uma 

importante alternativa às manipulações e resoluções meramente numéricas. O programa 

pode, por exemplo, realizar derivações, integrações e álgebra de matrizes com termos na 

forma literal. Seu uso poupa o engenheiro do trabalho maçante e com grande 

probabilidade de erros ao se manipular expressões matemáticas complexas e com 

elevado número de termos. 

O segundo é o Scilab/Matlab, usado para computação numérica semelhante ao 

e que fornece um poderoso ambiente computacional aberto para aplicações científicas.  

O terceiro é o MotionView/MotionSolve/OptiStruct da empresa Altair 

Engineering que forma um ambiente de análise multicorpos e componentes. O primeiro 

serve de pré-processado (interface gráfica) dando de entrada os parâmetros a serem 

resolvidos matematicamente pelo solver (MotionSolve) que retorna os dados de saída a 

serem visualizados no pós-processador HyperView. Embora não seja gratuito, este 

software é disponibilizado sem custo para a Politécnica da USP através da parceria com 

o programa PACE (Partners for the Advancement of Collaborative Engineering 

Education) 

Os três softwares são bastante complexos e com inúmeras funcionalidades a 

serem exploradas. Foge do escopo deste trabalho detalhar profundamente cada um 

deles. É importante, porém, termos uma visão geral da estrutura como cada um trabalha 

e também saber como proceder para simulações aplicadas a multicorpos. 

5 APRESENTAÇÃO E SOLUÇÃO DO PROBLEMA 

O desafio é fazer um estudo do comportamento de uma perna tendo como 

elementos motrizes os esforços aplicados por joelho e quadril, interessando determinar a 

posição e velocidades dos membros coxa e canela a cada instante. 



 

 

Figura 

Começaremos por propor um modelo físico que ilustre o fenômeno. O pêndulo 

duplo é um exemplo simples que 

Figura 

Temos dois corpos com massas e inércias definidas

revolução. Sobre o sistema age a gravidade e em cada junta há um motor que introduz 

torque ao sistema. 

Os ângulos que serão usados de parâmetro bem como a posição dos motores 

são apresentados a seguir: 

 

Figura 5-1 - Modelo referência - membro inferior 

Começaremos por propor um modelo físico que ilustre o fenômeno. O pêndulo 

exemplo simples que o representa. 

 

Figura 5-2 - Modelo simplificado - pêndulo duplo 

corpos com massas e inércias definidas e articulados por juntas de 

o sistema age a gravidade e em cada junta há um motor que introduz 

erão usados de parâmetro bem como a posição dos motores 
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Começaremos por propor um modelo físico que ilustre o fenômeno. O pêndulo 

articulados por juntas de 

o sistema age a gravidade e em cada junta há um motor que introduz 

erão usados de parâmetro bem como a posição dos motores 



 

 

Figura 

O motor M1 (quadril) age com um torque sobre a barra 1 e o motor M2 

(joelho) age com um torque de par ação e reação nas barras 1 e 2.

Iremos supor também amortecimentos nas articulações proporcionais às 

velocidades angulares. 

Os parâmetros ficam definidos conforme a tabela a seguir.

Parâmetro

Altura da pessoa

Massa da pessoa

Comprimento das barras

Posição do baricentro

Massa da barra 1

Massa da barra 2

Momentos de Inércia

Momentos de Inércia

5.1 MODELAMENTO 

ESTADO 

O equacionamento será feito com o uso da mecânica de 

bastante empregado na modelagem da dinâmica multicorpos.

A mecânica de Lagrange ou mecânica lagrangiana é uma formulação da 

mecânica clássica que combina a conservação do momento com a conservação da 

energia e é baseada num formalismo 

formalismo vetorial de Newton

 

Figura 5-3 - Ângulos de referência adotados 

O motor M1 (quadril) age com um torque sobre a barra 1 e o motor M2 

age com um torque de par ação e reação nas barras 1 e 2. 

Iremos supor também amortecimentos nas articulações proporcionais às 

Os parâmetros ficam definidos conforme a tabela a seguir. 

Tabela 5-1 - Parâmetros do modelo 

Parâmetro Símbolo Expressão Valor (SI)

Altura da pessoa H - 1,75

Massa da pessoa M - 75,00

Comprimento das barras L 0,2645*H 0,463

Posição do baricentro LG L/2 0,231

Massa da barra 1 m1 0,1*M 7,50

Massa da barra 2 m2 0,0465*M 3,49

Inércia da barra 1 Iz1 1/12*m1*L^2 2,917

Inércia da barra 2 Iz2 1/12*m2*L^2 1,356

ODELAMENTO DO SISTEMA PÊNDULO DUPLO EM ESPAÇO DE 

O equacionamento será feito com o uso da mecânica de Lagrange, método 

bastante empregado na modelagem da dinâmica multicorpos. 

A mecânica de Lagrange ou mecânica lagrangiana é uma formulação da 

mecânica clássica que combina a conservação do momento com a conservação da 

energia e é baseada num formalismo escalar mais simples e geral, quando comparado ao 

formalismo vetorial de Newton [4]. 
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O motor M1 (quadril) age com um torque sobre a barra 1 e o motor M2 

Iremos supor também amortecimentos nas articulações proporcionais às 

Valor (SI) 

1,75 

75,00 

0,463 

0,231 

7,50 

3,49 

2,917 

1,356 

UPLO EM ESPAÇO DE 

Lagrange, método 

A mecânica de Lagrange ou mecânica lagrangiana é uma formulação da 

mecânica clássica que combina a conservação do momento com a conservação da 

escalar mais simples e geral, quando comparado ao 
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De acordo com o teorema de Lagrange, temos: 

�� = ��� � ���	
� � − ���	� , � = �� − �� (5.1) 

Os Lagrangeanos de cada barra serão calculados separadamente, e depois 

somados. 

-Barra1 

��� = ��� ������������� + ����  �� �   (5.2) 

��� = !�"#�� (5.3) 

Com isso, obtém-se o Lagrangeano da barra 1. 

�� = ��� ������������� + ����  �� � −!�"#�� (5.4) 

Fazendo as substituições, temos: 

�� = ��� ���� �� � + ����  �� � −!�"���sin	( �) (5.5) 

-Barra2 

��� = �*� ������������� + ��*� + �� +  �� ,� (5.6) 

��� = !�"#�� (5.7) 

Assim, o Lagrangeano da barra 2 é dado por: 

�� = �*� ������������� + ��*� + �� +  �� ,� −!�"#��	 (5.8) 

Substituindo as velocidades e fazendo as manipulações trigonométricas, o 

Lagrangeano da barra 2 é dado por: 

�� = �*� ���� �� � + ����+ �� +  �� ,� + 2L�L/�012( �) 3 ��  �� +  �� �4� +
��*� + �� +  �� ,� −!�"+�� sin( �) + ���sin	( � +  �), (5.9) 

-Aplicação do método de Lagrange 
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-Barra1 

�� − ��56789:;�<7 = ==> ?@(�� + ��)@ �� A − @(�� + ��)@ � 			 
�� = ��� ��(��B�*)�	�� � − �(��B�*)�	� + C� ∗  �� 			 (5.10) 

O que é igual à: 

�� = �!����� +!� 3��� + ���� + L�L/�012( �)4 + EF��  �G + �!� 3���� +L1LG2012 2+EJ1 2−!2L1LG22KL 2 2+2 1 2+!1"�M1cos 1+!2"�1cos 1+�M2cos	  1+ 2+C1∗ 1		 (5.11) 

-Barra2: 

�� − ��56789:;�6:P97 = ==> ?@(�� + ��)@ �� A − @(�� + ��)@ �  

�� = ��� ��(��B�*)�	*� � − �(��B�*)�	* + C� ∗  ��  (5.12) 

O que é igual à: 

�� = �!� 3���� + L�L/�012( �)4 + EF��  �G + Q!����� + EF�R �G −!�L�L/�2KL( �) ��  �� + !�"��� cos( � +  �) + !�L�L/�2KL( �) �� + �� +  �� , + C� ∗ �� 			(5.13) 

Vale ressaltar que �� e �� dependem das variáveis  �,  �� ,  �G ,  �,  �� 	S	 �G .	 
Portanto: �� = ��( �,  �� ,  �G ,  �,  �� ,  �G ) e �� = ��( �,  �� ,  �G ,  �,  �� ,  �G ). 
Vamos analisar inicialmente o sistema a partir da posição de equilíbrio estável, 

com as duas barras alinhadas na vertical, ( � = −UK/2 e  � = 0), ou seja, quando a 

pessoa está em pé com a perna sem contatar o solo. 

Temos as expressões que relacionam os toques T1 e T2 com os ângulos e 

velocidades angulares que foi encontrada com o uso do Mathematica 

 �G = X(��,, ��,,  �,  �� ,  �,  �� ) 



 

 

Podemos fazer a integração numérica do sistema acima usando o método de 

Runge Kutta descrito a seguir.

Seja um problema de v

Então o método para este problema é dado pelas seguintes equações:

onde yn + 1 é a aproximação por RK4 de y(tn + 1), e

Então, o próximo valor (yn+1) é determinado pelo valor atual (yn) somado 

com o produto do tamanho do intervalo (h) e uma inclinação estimada. A inclinação é 

uma média ponderada de inclinações:

k1 é a inclinação no início do intervalo;

k2 é a inclinação no ponto médio do intervalo, usando a inclinação k1 para 

determinar o valor de y no ponto tn + h/2 através do método de Euler;

k3 é novamente a inclinação no ponto médio do intervalo, mas agora usando a 

inclinação k2 para determinar o valor de y;

k4 é a inclinação no final do intervalo, com seu valor y determinado usando k3.

Ao fazer a média das quatro inclinações, um peso maior é dado para as 

inclinações no ponto médio:

 �G = X(��,, ��,,  �,  �� ,  �,  �� ) 
Podemos fazer a integração numérica do sistema acima usando o método de 

Runge Kutta descrito a seguir. 

problema de valor inicial especificado como: 

 

Então o método para este problema é dado pelas seguintes equações:

 

onde yn + 1 é a aproximação por RK4 de y(tn + 1), e 

 

Então, o próximo valor (yn+1) é determinado pelo valor atual (yn) somado 

produto do tamanho do intervalo (h) e uma inclinação estimada. A inclinação é 

uma média ponderada de inclinações: 

k1 é a inclinação no início do intervalo; 

k2 é a inclinação no ponto médio do intervalo, usando a inclinação k1 para 

o ponto tn + h/2 através do método de Euler; 

k3 é novamente a inclinação no ponto médio do intervalo, mas agora usando a 

inclinação k2 para determinar o valor de y; 

k4 é a inclinação no final do intervalo, com seu valor y determinado usando k3.

média das quatro inclinações, um peso maior é dado para as 

inclinações no ponto médio: 
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Podemos fazer a integração numérica do sistema acima usando o método de 

Então o método para este problema é dado pelas seguintes equações: 

Então, o próximo valor (yn+1) é determinado pelo valor atual (yn) somado 

produto do tamanho do intervalo (h) e uma inclinação estimada. A inclinação é 

k2 é a inclinação no ponto médio do intervalo, usando a inclinação k1 para 

k3 é novamente a inclinação no ponto médio do intervalo, mas agora usando a 

k4 é a inclinação no final do intervalo, com seu valor y determinado usando k3. 

média das quatro inclinações, um peso maior é dado para as 
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O método RK4 é um método de quarta ordem, significando que o erro por 

passo é da ordem de h5, enquanto o erro total acumulado tem ordem h4. 

Note que as fórmulas acima são válidas tanto para funções escalares quanto 

para funções vetoriais como no caso em estudo. 

5.2 VALIDAÇÃO E SOLUÇÕES DO MODELO – FREQÜÊNCIAS NATURAIS DO 

SISTEMA  

Para efeito de verificação das freqüências naturais do sistema bem como 

validação do modelo matemático em espaço de estado desenvolvido anteriormente, 

vamos apresentar quatro formas de cálculo das freqüências e fazer uma comparação dos 

valores encontrados. 

5.2.1 - DETERMINAÇÃO ANALÍTICA DAS FREQÜÊNCIAS NATURAIS DO PÊNDULO 

DUPLO 

O Lagrangeano desenvolvido em 5.12 com uso de deslocamentos angulares ϕ1 

e ϕ2 (para facilitar a manipulação algébrica) mostrados abaixo e torques de entrada 

nulos, pode ser apresentado da seguinte forma: 

 

Figura 5-4 - Ângulos para determinação das freqüências naturais 

 

Que para pequenos ângulos e L1=L2=L pode ser reescrita como: 
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Podemos notar que o sistema tem a forma análoga a !YG + ZY = 0 e 

conseguimos expressá-lo em função de suas freqüências naturais por: 

 

Resolvendo o sistema via Matlab (rotina mostrada no apêndice – Rotina em 

Matlab para cálculo das freqüências analíticas) , temos: 

f1=0,6566 Hz 

f2=1,4571 Hz 

5.2.2 – FREQÜÊNCIAS NATURAIS ATRAVÉS DA TRANSFORMADA DE FOURIER  

Vamos calcular dois gráficos de deslocamentos angulares em função do tempo 

usando o modelo de espaço de estado e integrando o sistema em espaço de estado – não 

linear - no tempo. A partir destes gráficos vamos fazer a transformada de Fourier e 

analisar no domínio da freqüência. 

A implementação computacional do processo de integração numérica será 

realizada no programa Scilab, usando a função ODE que realiza a integração numérica a 

partir de condições iniciais fornecidas. O comando ODE é um solucionador de equações 

ordinárias e selecionamos o método de integração numérica Runge-Kutta descrito 

anteriormente. 

Inicialmente os pêndulos foram colocados alinhados e inclinados 5 graus em 

relação à vertical com velocidade inicial nula. 
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Figura 5-5 - Pêndulos inclinados alinhados a 5º da posição de equilíbrio 

Os gráficos dos ângulos teta1 e teta2 no tempo são apresentados a seguir: 

 

Figura 5-6 - Posição da coxa - integração do sistema em espaço de  estado (não linear) 
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Figura 5-7 -  - Posição da canela - integração do sistema em espaço de  estado (não linear) 

Os gráficos acima podem ser analisados no domínio da freqüência usando a 

transformada rápida de Fourier. 

A transformada de Fourier é, em essência, uma ferramenta matemática que 

realiza a transição entre as variáveis tempo e freqüência de sinais [6]. 

A transformada rápida de Fourier ou FFT (Fast Fourier Transform) faz a 

conversão do domínio do tempo para o da freqüência utilizando reduzido recurso 

computacional. 

Os gráficos de FFT dos ângulos do pendulo durante a oscilação são 

apresentados a seguir: 
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Figura 5-8 - FFT do deslocamento da canela 

Nota-se que os picos de freqüência estão bastante destacados, são em número 

de dois, indicando 2 modos de vibrar, e apresentam valores de 0,65918 Hz para a 

primeira freqüência e 1,4684 Hz para a segunda freqüência. 

5.2.3 – FREQÜÊNCIAS NATURAIS ATRAVÉS DAS MATRIZES DE ESTADO 

LINEARIZADAS  

É possível escrever a linearização utilizando a expansão por série de Taylor de 

primeira ordem ao mesmo tempo em que se obtém o espaço de estados, utilizando o 

jacobiano. Para utilizar esta ferramenta, deve-se escrever o vetor de estados como sendo 

a variação em relação à condição de operação, ou seja: 

[(>) = \[�[�[][^_ = àaa
b �� −  ��ccc �� −  ��ccc � −  �ccc � −  �cccde

eef  

[(>)� = àaa
b[��[��[]�[�̂ dee

ef = àaa
b �G �G �� �� dee

ef 
Onde  ��ccc,  ��ccc,  �ccc	S	 �ccc são os valores (constantes) da condição de operação e são 

dados a seguir. 
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 ��ccc = Velocidade angular da coxa na condição de operação = 0. 

 ��ccc = Velocidade angular da canela na condição de operação = 0. 

 �ccc = Posição angular da coxa na condição de operação = 3h/2. 

 �ccc = Posição angular da canela na condição de operação = 0. 

Assim, a matriz A, para linearizar as equações, é dada pelo Jacobiano de [(>)�  

em relação ao vetor [(>), no ponto de operação. Logo: 

i =
àa
aa
aa
aa
b@ G�@ �� @ G�@ �� @ G�@ � @ G�@ �@ G�@ �� @ G�@ �� @ G�@ � @ G�@ �@ ��@ �� @ ��@ �� @ ��@ � @ ��@ �@ ��@ �� @ ��@ �� @ ��@ � @ ��@ �de

ee
ee
ee
ef
=
àaa
aab
@ G�@ �� @ G�@ �� @ G�@ � @ G�@ �@ G�@ �� @ G�@ �� @ G�@ � @ G�@ �1 0 0 00 1 0 0 dee

eee
f
 

Novamente, o programa Mathematica calculou as derivadas no ponto de 

operação. Os valores finais dos elementos da matriz A são dados a seguir. O seu 

desenvolvimento está na rotina em anexo. 

i = \		−0.692614 		1.03658 	−29.0599 	16.4172		1.72763 		−3.7836 	40.8148 	−72.62121 0 0 00 1 0 0 _ 
Seguindo a mesma linha de raciocínio, a matriz B é dada pelo Jacobiano de [(>)�  em relação ao vetor p(>), também no ponto de operação. Assim: 

C =
àaa
aaa
aa
b@ G�@�� @ G�@��@ G�@�� @ G�@��@ ��@�� @ ��@��@ ��@�� @ ��@��de

eee
eee
ef
=
àaa
aab
@ G�@�� @ G�@��@ G�@�� @ G�@��0 00 0 dee

eee
f
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Com o auxílio do programa Mathematica, obteve-se a matriz B. 

C = \ 	1.38523 	−3.45525	−3.45525 	12.6120 00 0 _ 
Como se deseja analisar as respostas das posições e velocidades angulares, a 

matriz C é a matriz diagonal unitária. Como neste sistema não há alimentação direta, a 

matriz D é nula. Logo: 

q = \1 0 0 00 1 0 00 0 1 00 0 0 1_ e r = \0 00 00 00 0_ 
Vale lembrar que neste método de resolução da linearização e de espaço de 

estados, os vetores de estado, de resposta e de entrada são representados pela variação 

em relação à condição de operação. Ou seja: 

[(>) = àaa
b �� −  ��ccc �� −  ��ccc � −  �ccc � −  �cccde

eef , s(>) = àaa
b �� −  ��ccc �� −  ��ccc � −  �ccc � −  �cccde

eef 	S	p(>) = t�� − ��u�� − ��u v 
Onde: 

��u = Torque do motor 1 (que age sobre a coxa) na condição de operação = 0 

Nm. 

��u = Torque do motor 2 (que age sobre a canela) na condição de operação = 0 

Nm. 

Com todas as matrizes definidas, tem-se o espaço de estados com as equações 

linearizadas. Tem-se: 

[(>)� = i ∗ [(>) + C ∗ p(>) 
s(>) = q ∗ [(>) + r ∗ p(>) 

O sistema foi linearizado em torno da posição vertical, sendo representado a 

seguir pelas matrizes de estado A, B e C. 
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àaa
b �G �G �� �� dee

ef = \		−0.692614 		1.03658 	−29.0599 	16.4172		1.72763 		−3.7836 	40.8148 	−72.62121 0 0 00 1 0 0 _ ∗ àa
b �� �� � �de

ef

+ \ 	1.38523 	−3.45525	−3.45525 	12.6120 00 0 _ ∗ t����v 

àa
b �� �� � �de

ef = \1 0 0 00 1 0 00 0 1 00 0 0 1_ ∗ àa
b �� �� � �de

ef 
A análise é feita por meio dos pólos do sistema. Esses pólos são seus 

autovalores, ou seja, eles são as raízes do denominador da matriz de funções de 

transferências. Quando se utiliza o comando pole(sys) no programa Matlab, ele fornece 

os pólos do sistema. Os pólos são: 

		−0.0992	 + 	4.1237K	
		−0.0992	 − 	4.1237K	
		−2.1386	 + 	8.9477K	
		−2.1386	 − 	8.9477K 

A freqüência natural do sistema pode ser calculada através do módulo do valor 

complexo dos autovalores. Temos então duas freqüências naturais apresentadas abaixo. 

w1=4,1249 rad/s 

w2 = 9,1997 rad/s 

f1 = 0,6565 Hz 

f2 = 1,4642 Hz 

5.2.4 – ANÁLISE DAS FREQÜÊNCIAS ATRAVÉS DO SISTEMA LINEARIZADO 

USANDO SOLVER MOTION SOLVE  

Em geral, os solver de multicorpos apresentam um tipo de solução chamada 

linear que realiza o cálculo das matrizes de estado além dos autovalores, autovetores do 
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sistema, freqüências naturais e modos de vibrar. Esses dados são apresentados na tabela 

a seguir: 

Tabela 5-2 - Freqüências naturais obtidas pelo MotionSolve na solução do tipo linear 

 

5.2.5 QUADRO GERAL COMPARATIVO ENTRE FREQÜÊNCIAS NATURAIS :  

A seguir temos um quadro comparativo das freqüências naturais calculadas 

Tabela 5-3- Quadro comparativo das freqüências naturais obtidas 

Método 

1ª Freqüência 

(Hz) 

Erro relativo f1 

(%) 

2ª Freqüência 

(Hz) 

Erro relativo f2 

(%) 

1 -Analítico 0,6566 - 1,4571 - 

2 - FFT 0,6592 0,3929 1,4648 0,5312 

3 -Espaço de estado– 

 Sistema linearizado 0,6565 -0,0152 1,4642 0,4873 

4 - Sistema linear – 

Solver multicorpos 0,6564 -0,0305 1,4644 0,4996 

 

Podemos notar que nos quatro métodos os valores de freqüência natural 

ficaram bastante próximos com erros menos que 1% o que indica que para pequenos 

ângulos, o modelamento está coerente. 

5.3 VALIDAÇÃO E SOLUÇÕES DO MODELO – GRANDES DESLOCAMENTOS 

Além da comparação das freqüências naturais do sistema, podemos também 

comparar o histórico das posições e velocidades angulares ao submeter o sistema a uma 

condição que fuja da linearidade usando tanto a solução desenvolvida nesse trabalho 

com o sistema na forma de espaço de estado e quanto a solução com o solver de 

multicorpos MotionSolve. 

Foi projetado um o modelo físico de dois corpos articuladas por juntas de 

revolução nas extremidades com parâmetros de massas, inércias, gravidade, torque 

motor e dissipativo iguais aos do modelo matemático. A simulação é ilustrada a seguir. 
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Figura 5-9 - Modelo do pêndulo duplo em ambiente MotionView 

Vamos aqui usar os pêndulos dispostos a 90 graus. 

 

Figura 5-10 - Posição inicial - grandes deslocamentos 

Abaixo temos os gráficos da posição angular da coxa (corpo superior do 

pêndulo), posição angular da canela (corpo inferior) e posições angulares da canela de 

coxa. O primeiro gráfico é referente à solução numérica por integração do sistema em 

espaço de estado com o Scilab (rotina no apêndice – Integração numérica não linear) e a 

segunda é a solução com o solver MotionSolve. 
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Figura 5-11 - Ângulo da coxa - grandes deslocamentos – integração do modelo não linear em espaço de estado 

 

Figura 5-12 - Ângulo da canela - grandes deslocamentos – integração do modelo não linear em espaço de 
estado 
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Figura 5-13 - Ângulos da coxa e canela sobrepostos - grandes deslocamentos  – solução do solver MotionSolve 

Podemos sobrepor os gráficos, comparando a solução do MotionSolve com a 

integração do sistema em espaço de estado, conforme mostrado abaixo. 

 

Figura 5-14 - Comparação da solução por integração do sistema em espaço de estado e do MotionSolve – 
grandes deslocamentos 

Até aproximadamente 3,5s os dois métodos apresentam respostas bastante 

próximas. 

 Como o sistema um comportamento que podemos considerar como caótico a 

resposta é bastante sensível à integração numérica aplicada o que pode causar um 
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distanciamento dos gráficos a partir de certo ponto e eles passam a não mais se 

aproximar. 

A imagem a seguir ilustra o movimento de um ponto situado na extremidade 

do pêndulo. 

 

 

Figura 5-15 – Traçado da ponta do pêndulo até 5s – Vista 3D 

 

Figura 5-16 – Traçado da ponta do pêndulo até 1.5s – Vista 2D 

Nota-se uma boa aproximação dos dois resultados por este traçado. 
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5.4 FREQÜÊNCIAS NATURAIS DE COMPONENTES  

Os componentes (ou corpos ou partes) do pêndulo foram, até aqui, modeladas 

como rígidas. Esta é uma primeira abordagem que nos ajuda a entender características 

do sistema como a freqüência natural do sistema e evolução quando submetido a 

grandes deslocamentos. 

O modelamento por corpo rígido é, na verdade, uma idealização uma vez que 

os corpos têm rigidez característica da estrutura. 

Esta rigidez influencia em maior ou menor grau na dinâmica do sistema e é por 

esta razão que será feito um estudo da flexibilidade bem como a determinação das 

freqüências naturais de uma parte específica, no caso a coxa. 

Para efeitos de simplificação do problema, uma vez que o trabalho busca 

entender como o modelamento numérico dos sistemas de múltiplos corpos (pêndulo 

duplo, em específico), será considerada apenas a rigidez no sentido axial, se 

comportando o corpo como um elemento de treliça (ou ROD). Estamos, portanto, 

desconsiderando o efeito de flexão. Também será considerado o regime de linearidade 

de material (deslocamento proporcional ao carregamento F=k.x). 

Análises mais refinadas como a consideração da flexibilidade, não linearidade 

geométrica e de material são possíveis, porém fogem do escopo deste trabalho. Vale 

salientar que a análise da forma como será feita pode servir de base para estudos 

posteriores. 

5.4.1 FREQÜÊNCIAS NATURAIS – FORMA ANALÍTICA  

A título de comparação e validação do modelo, as freqüências naturais 

longitudinais de uma viga na condição livre-livre para um corpo contínuo são dadas por: 

 

Com n=0, 1, 2, 3... 

Consideremos os valores aproximados para a propriedade do osso: 
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E = 7 GPa 

Rho = 8000 Kg/m^3 

L = 0,4629 m 

Portanto, de forma analítica temos, lembrando que wn=2*π*f: 

 f1 = 0 Hz 

 f2 = 1010,4 Hz 

 f3 = 2020,8 Hz 

5.2.2 FREQÜÊNCIAS NATURAIS – FORMA DISCRETIZADA EM ELEMENTOS 

FINITOS  

As equações para análise de sistemas contínuos são adequadas para aplicações 

em que as seções transversais têm propriedades aproximadamente constantes. No 

entanto, se as propriedades geométricas e de materiais mudarem ao longo do 

componente (por exemplo em partes complexas como uma perna) então uma 

modelagem mais apropriada para representar de forma viável computacionalmente a 

solução é necessária para descrever essas descontinuidades. 

A modelagem em elementos finitos é uma forma de descrever estas 

descontinuidades de propriedades. 

Este modelo representa sistemas contínuos de forma discretizada em elementos 

menores. 

Abaixo estão alguns exemplos de órgãos de estruturas complexas do corpo 

humano representados em elementos finitos. 

 



 

 

Figura 5-17

 Vamos representar uma das partes do pendulo como uma viga com 

elemento de treliça (carregamento somente axial) dividida em 2 elementos.

Consideremos que a viga pode sobr

desejarmos modelar a viga com elementos discretos, 

massa e rigidez dispostos na forma matricial

Temos então que a matriz de rigidez do elemento é dada por:

Onde 

E a matriz de massa é dada por:

17 - Exemplos de estruturas ósseas em elementos finitos 

Vamos representar uma das partes do pendulo como uma viga com 

elemento de treliça (carregamento somente axial) dividida em 2 elementos.

que a viga pode sobre apenas vibrações longitudinais. Se 

modelar a viga com elementos discretos, podemos escolhe

massa e rigidez dispostos na forma matricial para cada elemento conforme abaixo.

 

que a matriz de rigidez do elemento é dada por: 

 

 

E a matriz de massa é dada por: 
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Vamos representar uma das partes do pendulo como uma viga com 

elemento de treliça (carregamento somente axial) dividida em 2 elementos. 

e apenas vibrações longitudinais. Se 

escolher os valores de 

conforme abaixo. 
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Com 

 

Sendo ρe a densidade linear da viga. 

Para um corpo de comprimento L, seção transversal A, módulo de elasticidade 

E e densidade volumétrica ρ, podemos calcular rigidez e massa concentrada como 

mostrado anteriormente para cada elemento. 

Vamos agora usar 2 elementos para representar a viga. 

 

Matriz de rigidez para cada elemento: 

 

Devemos combinar as matrizes de rigidez e massa elemental em matrizes que 

representem o corpo globalmente impondo vínculos a cada um dos nós do modelo: 

 

As matrizes de rigidez e massa dos dois elementos são indicadas abaixo: 
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E os vínculos entre elementos são dados por: 

 

Para assegurar as restrições de devemos somar as linhas correspondentes a 

cada nó para eliminar a força interna do nó. 

 

E a matrizes de massa e inércia resultantes são dadas por: 

 

 

Podemos agora equacionar o movimento do sistema por: 

 

Para determinação das freqüências naturais da viga, passamos a ter um 

problema de autovalores e autovetores. 
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O sistema fica então representado por: 

w 0.6130 −0.6130 0−0.6130 1.2260 −0.61300 −0.6130 0.6130 xwp1Gp2Gp3G x + w1.2510 0.6255 00.6255 2.5019 0.62550 0.6255 1.2510xw
p1p2p3x

= wy1y2y3x 

Os valores de freqüência calculados usando 2 elementos foram calculadas e são 

mostrados abaixo: 

  f1 = 0 Hz 

  f2 = 1114,1 Hz 

  f3 = 2228,2 Hz 

Para validar o modelo desenvolvido acima foi um mesmo modelo usando um 

software comercial de elementos finitos. 

 

Figura 5-18 - Modelamento da coxa em elementos finitos 

Os resultados são apresentados abaixo: 

Tabela 5-4 - Freqüências naturais calculadas com o solver de elementos finitos OptiStruct 

 

A tabela abaixo sintetiza as freqüências encontradas para os diferentes 

métodos: 
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Tabela 5-5 - Comparação das freqüências naturais do componente 

Método 

1ª Freq 

(Hz) 

Erro relativo f1 

(%) 

2ª Freq 

(Hz) 

Erro relativo f2 

(%) 

3ª Freq 

(Hz) 

Erro relativo f3 

(%) 

Analítico 0,0 - 1010,4 - 2020,8 - 

Modelo 2 elementos 0,0 0,0 1114,1 10,3 2228,2 10,3 

Modelo Elementos finitos – 

Solver OptiStruct 0,0 0,0 1172,0 16,0 2342,4 15,9 

 

Pode-se notar que a solução desenvolvida no trabalho ficou mais próxima da 

analítica do que a solução do software OptiStruct e o erro foi da ordem de 10%. 

Vale destacar que o modelo desenvolvido para 2 elementos pode ser facilmente 

extrapolado para mais elementos e a precisão será ainda maior. As duas soluções serão 

idealmente iguais para um número infinito de elementos (equivale ao meio contínuo). 

Para saber o número de elementos requeridos para a solução é preciso fazer um 

estudo de convergência, variando o número de elementos e avaliando o erro. 

6 MODELAMENTO E SOLUÇÃO EM AMBIENTE MOTIONSOLVE 

CONSIDERANDO A FLEXIBILIDADE DE UM COMPONENTE  

Fizemos até aqui duas abordagens para estudo do pendulo duplo. A primeira 

esteve focada na dinâmica do sistema e a segunda, na dinâmica do componente. 

Podemos relacionar as duas soluções considerando a dinâmica do componente 

e do sistema simultaneamente. Isto é feito considerando o mecanismo com partes 

flexíveis. 

No modelo do sistema existem poucos graus de liberdade, geralmente um 

número menor que 100 e o modelo do componente em elementos finitos normalmente 

chega a ter milhões de graus de liberdade. 

Portanto, as soluções matemáticas empregadas também são distintas. Por 

exemplo, Runge Kutta para sistema e inversão de matrizes e autovalores em elementos 

finitos. 

Existem métodos que integram essas duas abordagens. Um método comumente 

usado é a síntese de Craig-Bampton que reduz o número de graus de liberdade de um 
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componente discretizado em elementos a valores tipicamente da ordem de 10 a 100. Isto 

permite fazer junção do modelo em elementos finitos no modelo do sistema. 

Foge do escopo deste trabalho detalhar numericamente o método de Craig-

Bampton uma vez que se trata de algoritmos trabalhosos de inversão de matrizes, 

ortogonalização e também transformação das variáveis do sistema. 

De uma forma geral, podemos pensar no método de Craig-Bampton como 

semelhante à transformada de Fourier em que as funções podem ser reescritas como 

combinação de uma base de funções na forma de senos. 

Na síntese de Craig Bampton, a base são as condições deformadas (ou os 

autovetores) ou modos de vibrar do componente e qualquer outra condição deformada 

pode ser uma combinação desta base. 

Portanto na solução do sistema, devemos encontrar os fatores que multiplicam 

esta base. 

Um detalhamento do método está presente no apêndice – flexibilidade 

estrutural em análises dinâmicas – método de Craig Bampton. 

O uso desta solução pode ser ilustrado abaixo onde foi construído um modelo 

com uso de um componente flexível. 

A coxa foi modelada em elementos finitos com 2 elementos 1D de viga, tendo 

as mesmas características de material consideradas no cálculo das freqüências naturais 

da coxa, sendo: 

E = 7 GPa 

Rho = 8000 Kg/m^3 

L = 0,4629 m 

D=2” 

O componente foi modelada no programa de elementos finitos HyperMesh em 

elementos de treliça (ROD). 
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A síntese modal foi feita no solver OptiStruct, utilizando o método de Craig-

Bampton. 

Vamos começar validando o modelo na posição vertical, em equilíbrio, 

conforme mostrado na figura abaixo: 

 

Figura 6-1 - Modelo pêndulo duplo com corpo flexível – posição vertical 

O corpo flexível foi modelado com 2 elementos e a massa fica distribuída entre 
os nós conforme mostrado a seguir. 

 

Figura 6-2 – Esquema do modelo flexível com 2 elementos 
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z = i. �� = h. (2	. 25,4	. 10{])�	. 7	. 10|0,4929/2 = 5,76	. 10}~/! 

A força na primeira mola será F1 = 91,15N e a força na segunda mola será 
F2=53,65N 

O deslocamento no nó intermediário, N2, será: 

∆~2 = y1z = 1,58	. 10{�	! 

O deslocamento do nó extremo N3 será: 

∆~3 = ∆~2 + y2z = 2,51	. 10{�	! 

A solução encontrada pelo solver MotionSolve foi: 

 

Figura 6-3 - Deslocamentos da parte flexível - posição vertical 

Comparando os dois resultados, temos: 

Tabela 6 - Comparação entre deslocamentos calculado e MotionSolve 

Nó 

Deslocamento 

calculado (x10e-6 m) 

Deslocamento MotionSolve 

(x10e-6 m) Erro (%) 

2 1,58 1,48 6,3 

3 2,51 2,32 7,6 

 

Vamos agora analisar os deslocamentos em uma condição dinâmica. Primeiro 
com o pêndulo oscilando com pequenos deslocamentos e em outra análise com grandes 
deslocamentos. 

Abaixo temos o pêndulo flexível com posição inicial a 5 graus com a vertical. 



 

 

A seguir temos a resposta do sistema para a condição inicial de 5 graus e 
oscilação livre. 

Figura 6-5 - Respostas do pêndulo flexível em oscilação livre. Posição in

Podemos notar que as maiores deformações ocorrem nos pontos de elevadas 
acelerações centrípetas, ou seja, quando a coxa está p

Os valores de deformação oscilam entre 2,729e

Vamos agora simular o pêndulo em uma condição longe da linearidade com os 
pêndulos a 90 graus na condição inicial e oscilação livre, conforme ilustração abaixo.

Figura 6-4 - Pêndulo flexível a 5º 

temos a resposta do sistema para a condição inicial de 5 graus e 

Respostas do pêndulo flexível em oscilação livre. Posição inicial 5º

os notar que as maiores deformações ocorrem nos pontos de elevadas 
acelerações centrípetas, ou seja, quando a coxa está próxima da vertical.

ormação oscilam entre 2,729e-6 m e 2,767e-6

Vamos agora simular o pêndulo em uma condição longe da linearidade com os 
pêndulos a 90 graus na condição inicial e oscilação livre, conforme ilustração abaixo.
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temos a resposta do sistema para a condição inicial de 5 graus e 

 

cial 5º 

os notar que as maiores deformações ocorrem nos pontos de elevadas 
róxima da vertical. 

6 m. 

Vamos agora simular o pêndulo em uma condição longe da linearidade com os 
pêndulos a 90 graus na condição inicial e oscilação livre, conforme ilustração abaixo. 



 

 

Figura 

As repostas encontradas
deformação foram: 

Figura 

Figura 6-6 - Pêndulo flexível ortogonal – condição inicial 

As repostas encontradas para o deslocamento angular da coxa e sua 

Figura 6-7 - Respostas pêndulo flexível ortogonal 
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para o deslocamento angular da coxa e sua 
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Figura 6-8 - Deformações no instante do pico 1 (t=0,27s) 

 

Figura 6-9 - Deformações no instante do pico 2 (t=0,59s) 

 

 

Figura 6-10 - Deformações no instante do pico 3 (t=1,09s) 
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Os resultados das deformações se mostraram condizentes com o que era 
esperado com os picos de deformação acontecendo nos instantes de mudança brusca da 
trajetória. 

A deformação máxima ficou em 1,75e-5 m, ou seja, 17,5 µm o que demonstra 
que para este cenário a flexibilidade é muito baixa e tem pouca influência na dinâmica 
do sistema.  

 

7 CONCLUSÕES 

 

O problema de mecanismo de pêndulo duplo abordado neste trabalho se 

mostrou adequado para compreender a forma com que é possível analisar problemas de 

dinâmica multicorpos. 

Primeiramente foi apresentado um problema real de uma perna com duas 

articulações que pode ser representada por um modelo de pêndulo duplo. A dinâmica do 

pêndulo foi então descrita na forma de espaço de estado. Para validar o modelo 

matemático foi feito um estudo das freqüências naturais do sistema comparando com 

valores analíticos e também com modelos desenvolvidos em ferramenta específica para 

dinâmica de múltiplos corpos (solver MotionSolve) e os valores encontrados ficaram 

muito próximos, com erro menor que 1%. 

Outra comparação foi feita com o pêndulo em uma posição ortogonal sobre a 

ação da gravidade, posição em que a dinâmica se apresenta altamente não linear. O 

resultado de deslocamentos angulares por integração numérica do modelo em espaço de 

estado com método Kunge Kutta foi comparado à solução do MotionSolve e os valores 

ficaram muito próximos até 3,5s. Após esse tempo, as soluções passaram a divergir. 

Como o resultado tem, em certa medida, de perfil caótico, qualquer pequena variação na 

solução numérica pode alterar o comportamento do sistema e então as soluções podem 

divergir bastante a partir daquele ponto. Vale ressaltar que o modelo e integração deste 

trabalho foram feitos de forma a ter um controle de todos os passos (modelo e 

integração) o que não acontece com a solução do MotionSolve que, grosso modo, pode 

ser visto como uma “caixa preta”. 
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Foi realizado também um estudo com foco no entendimento na dinâmica do 

componente, de sua rigidez longitudinal, distribuição de massa e freqüências naturais 

através da discretização em duas partes (ou elementos). Os valores encontrados foram 

então comparados a uma solução comercial de elementos finitos (OptiStruct) e também 

a solução analítica que ficaram com erro da ordem de 5%. 

Integrando as duas abordagens, dinâmica do sistema e do componente, foi feito 

com estudo do pêndulo com um componente em corpo flexível, por síntese de Craig 

Brampton usando as soluções OptiStruct e MotionSolve. Neste caso não foi 

desenvolvido o detalhamento matemático da solução. As deformações do componente 

flexível ficaram muito baixas, e podemos, portanto concluir que para o cenário deste 

trabalho, a dinâmica do componente não altera a dinâmica do sistema por envolver 

baixos carregamentos e freqüências distintas. 

Trabalhos futuros podem ser desenvolvidos no sentido de detalhar 

numericamente a solução com corpo flexível. Também poderá servir de base para 

trabalhos mais completos sobre a locomoção humana. 
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9 APÊNDICES 

9.1 FLEXIBILIDADE ESTRUTURAL EM ANÁLISES DINÂMICAS – MÉTODO DE 

CRAIG BAMPTON  

9.1.1.1 Superposição Modal 

A chave para a determinação da resposta dinâmica de um sistema discretizado 

em elementos finitos, através da sua flexibilidade de modos, baseia-se no método da 

superposição modal. É assumido que, para uma estrutura sujeita a um carregamento 

dinâmico, a sua configuração deformada em um dado instante de tempo pode ser obtida 

somando-se as configurações de diferentes modos de vibrar. Como demonstra a Figura 

9-1, essa soma de configurações é uma combinação linear dos modos naturais de 

vibração da estrutura. Nessa soma de efeitos, cada modo de vibração é multiplicado por 

um fator que representa a sua importância ao cálculo da resposta dinâmica naquele 

instante de tempo. Tal fator é conhecido como fator de escala ou amplitude modal. 

 

Figura 9-1 - Superposição modal 

  

(9-1) 

Onde n é o número de modos de vibrar e qi são as coordenadas modais, 

também chamadas de fatores de escala ou amplitudes modais. 

Portanto, a superposição modal, definida pela Equação (9-1), que representa a 

resposta transiente da estrutura, depende da execução de duas etapas. A primeira é o 

cálculo dos modos (ϕi) e freqüências naturais de vibração da estrutura, em 

procedimento conhecido por análise modal. A segunda é a determinação do fator de 
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participação (amplitude) de cada um desses modos (qi) na resposta dinâmica do instante 

t. 

9.1.1.2 Análise Modal 

A resposta dinâmica linear do sistema, para cada grau de liberdade, é regida 

pelo cálculo da equação de equilíbrio, ����YG � + �q��Y� � + �z��Y� = ∑ySY> 
Todavia, para sistemas discretizados em elementos finitos, com uma 

quantidade muito grande de GDL (graus de liberdade), a largura de banda das matrizes 

[M], [C] e [K] torna bastante oneroso o processo computacional de solução dessas 

equações de equilíbrio. 

A alternativa para esse problema é uma mudança da base de deslocamentos do 

modelo de elementos finitos para uma base reduzida de deslocamentos generalizados. O 

objetivo dessa troca é a obtenção de novas matrizes de massa, Q��R, amortecimento �q�� e 

rigidez �z�� para o sistema, as quais têm largura de banda menor que as matrizes do 

sistema original. Para realizar essa mudança de base, uma matriz de transformação é 

necessária. As colunas dessa matriz de transformação [ϕ], são os autovetores, que são o 

resultado da análise modal. 

Matematicamente, o procedimento de análise modal consiste, resumidamente, 

em: 

-Montagem do sistema z − ����; 
-Cálculo dos autovalores do sistema {λi}; 

-Determinação das freqüências naturais, �K = √�K 
-Cálculo dos autovetores {ϕi}. 

De posse da matriz [ϕ], realiza-se a transformação das coordenadas da equação 

de equilíbrio, para se obter as equações dinâmicas dos deslocamentos generalizados 

modais. Essa transformação é dada pela Equação 9.2. 

�Y(>)� = ����Y�(>)�  (9-2) 
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As novas equações dinâmicas, agora na base de deslocamentos generalizados, 

são resumidas na 9.3. 

(9.3) 

 

 

 

A matriz [ϕ] tem em suas colunas os autovetores ��,, ��	, �],…	��, que são os 

modos de vibração do sistema. A matriz diagonal [ω]2 tem como elementos não nulos ���, ���, �]�, … , ���, que são os quadrados das frequências naturais do sistema, 

determinadas a partir dos autovalores. 

Do ponto de vista físico, a análise modal reflete o comportamento dinâmico 

básico da estrutura e indica como responderá a um carregamento transiente agindo sobre 

ela. Também é importante ressaltar que, quando é realizada a análise modal de uma 

estrutura livre (sem vinculações), os primeiros modos de vibrar não acarretam 

deformação na mesma. São os modos de autovalor ou freqüência natural nula, nos quais 

não há transformação de energia cinética em potencial elástica (deformação). Tais 

modos são chamados de modos de corpo rígido. 

9.1.1.3 Amplitude Modal (Fator de Escala) 

Para determinar o peso de cada modo de vibração na resposta dinâmica do 

sistema, substitui-se a equação de superposição modal (Equação 9.1) na equação de 

equilíbrio dinâmico. Essa substituição é demonstrada pela Equação 9.4. 

(9.4) 

Através da propriedade de ortogonalidade, é possível simplificar essa equação, 

como indica a Equação 9.5. 

(9.5) 
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Aplicando-se novamente o conceito da mudança de base real para uma base 

generalizada, ou desacoplada, originam-se matrizes de massa, amortecimento, rigidez e 

força generalizadas para um dado modo de vibrar, ϕi A definição das matrizes 

desacopladas é dada na Equação 3.6. 

   (9.6) 

Assim, a Equação 9.5 tem sua versão desacoplada dada pela Equação 9.7. 

(9.7) 

O fator de participação de cada modo, qi, portanto, é determinado resolvendo-

se uma equação escalar para cada modo de vibrar i (Equação 9.7). Isto é, basta resolver 

um sistema de um GDL em coordenadas generalizadas. A ideia principal aqui é a 

mudança da base física da estrutura para uma base desacoplada, onde as soluções das 

equações são mais facilmente encontradas. 

Finalmente, com a determinação dos modos naturais de vibração (��,, ��	, �],…	��,)	 e de seus respectivos fatores de participação (q1, q2,..., qn), é 

encontrada a resposta dinâmica da estrutura para cada instante de tempo t, a partir da 

superposição modal. Essa resposta transiente é dada pela Equação 3.8, a qual é análoga 

à equação inicial. 

(9.8) 

Onde {x(t)} é a resposta da estrutura no instante t; qi a qn são os fatores de 

participação de cada modo; e {ϕ1} a {ϕn} são os modos de vibração, calculados na 

análise modal. 
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9.1.1.4 Flexibilidade Modal em Sistemas Multicorpos 

O método de elementos finitos discretiza uma estrutura real, com infinitos 

graus de liberdade, em um modelo composto por um grande número de elementos, nós 

e GDL. Os deslocamentos lineares de cada um desses nós, x, são descritos de forma 

aproximada por combinação linear (superposição) de modos de vibrar como já 

demonstrado pelas Equações 9.1 e 9.8. 

Conforme a premissa básica da superposição modal, é possível descrever o 

comportamento de inúmeros GDL nodais com um pequeno número de GDL modais, os 

quais mais influenciam o comportamento do sistema na faixa de freqüência de interesse. 

Para que as máximas deformações relevantes ao sistema possam ser 

representadas com o menor número de coordenadas modais, é empregada uma técnica 

de síntese modal de componentes. Trata-se do método de Craig-Bampton, que permite a 

definição de subconjuntos de GDL (da análise modal) que não estarão sujeitos à 

superposição modal. São os chamados GDL de contorno, ou interface, os quais são 

preservados na base modal de C-B. 

Portanto, o método divide os GDL do sistema em dois grupos: os GDL de 

contorno, 

{ xb}, e os GDL de interior, {xi}. Definem-se, assim, dois conjuntos de modos 

de vibrar: os modos vinculares e os modos normais de base fixa. Os modos vinculares 

são formas estáticas obtidas pela aplicação de deslocamento unitário (translacional ou 

rotacional) em cada GDL de contorno, enquanto todos os demais GDL de contorno são 

mantidos fixos. O resultado é que as coordenadas modais dos modos vinculares são 

iguais aos deslocamentos dos GDL de contorno ({qc} = { xb}). 

Os modos normais de base fixa são obtidos ao se restringir os GDL de 

contorno e calcular uma solução de autovalores e autovetores. São esses modos que 

definem a expansão modal dos GDL de interior, a qual tem qualidade proporcional ao 

número de modos retidos pelo usuário. 

A Equação 9.9 descreve a relação entre os GDL físicos ({x}) e os modos de 

Craig-Bampton com as suas coordenadas modais. 
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(9.9) 

Onde: 

{xb} - GDL de contorno 

{xi} - GDL de interior 

{ qc}- Coordenadas modais dos modos vinculares 

{ qn} - Coordenadas modais dos modos normais de base fixa 

[I] - Matriz identidade 

[0] - Matriz zero 

[Φic] - Deslocamentos físicos dos GDL de interior nos modos vinculares 

[Φin] - Deslocamentos físicos dos GDL de interior nos modos normais 

As matrizes generalizadas de massa e rigidez, correspondentes à base modal de 

Craig-Bampton, são obtidas via transformação modal. Para a rigidez, tal transformação 

é ilustrada pela Equação 9.10. 

(9.10) 

Para a massa, a transformação modal é dada pela Equação 9.11. 

(9.11) 
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Onde os índices i e b denotam os GDL de interior e de contorno, 

respectivamente; c e n os modos vinculares e normais, respectivamente; e �z��;{� e ����;{�	são as matrizes generalizadas de massa e rigidez de C-B, respectivamente. 

Como �z��;{� e ����;{� não são matrizes diagonais, os modos ‘puros’ de 

Craig-Bampton não são ortogonais. Para transformar a base modal de C-B em uma base 

equivalente e ortogonal de coordenadas modais, [q*] é necessária uma matriz de 

transformação, [N]. Essa matriz é o arranjo dos autovalores resultantes do autoproblema 

da Equação 9.12. 

(9.12) 

A matriz de transformação é aplicada à base modal, de acordo com a Equação 

9.13. 

(9.13) 

O efeito na fórmula da superposição modal (Equação 9.1) é, então, apresentado 

na Equação 9.14. 

(9.14) 

Onde ϕi* são os modos de C-B ortogonalizados. 

Para considerar a flexibilidade estrutural, é importante assumir como pequena a 

deformação linear relativa de um corpo ao referencial local, ao passo que esse 

referencial pode sofrer movimentos grandes e não lineares. Para ilustrar a aplicação da 

flexibilidade modal em ferramenta de MBS (Equações 9.9 a 9.14), a figura 9.2 mostra 

um ponto P genérico em um corpo flexível B qualquer. A posição de P é relativa ao 

sistema de coordenadas local B e ao referencial inercial G. 
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Figura 9-2 - Vetor posição do ponto P’ no corpo flexível após a deformação 

A localização instantânea de um ponto, conectado a um nó P’ no corpo flexível 

(relativa aos referenciais local B e inercial G), é dada pela Equação 9.15. 

(9.15) 

Sendo {h} o vetor posição da origem do sistema global até a origem do corpo 

B; {Sp} o vetor posição do ponto P em relação à origem do corpo; e {xp} o vetor da 

deformação translacional do ponto P da posição não deformada até a deformada. 

O vetor deformação {xp} é encontrado através de superposição modal, como 

indica a 

Equação 9.16, a qual é análoga à Equação 9.1. 

(9.16) 

Onde {xp} é uma parte da matriz modal, correspondente ao GDL translacional 

do ponto P. A dimensão de é 3 x n, onde n é o número de modos. As coordenadas 

modais qi, i = 1...n, são coordenadas generalizadas do corpo flexível. Esse 

procedimento, para cálculo do vetor deformação, pode ser aplicado em todos os GDL 

do corpo flexível. 

As coordenadas modais qi podem ser adicionadas ao vetor de coordenadas 

generalizadas, formando o vetor de coordenadas generalizadas do corpo flexível. Tal 

vetor é definido conforme a Equação 9.17. 

(9.17) 



57 
 

 

 

Onde x, y, z, Φ, θ e ψ são os GDL translacionais e rotacionais; e qi as 

coordenadas modais. 

De forma análoga aos corpos rígidos, as posições e velocidades (translação) e 

as orientações e velocidades angulares (rotação) dos GDL do corpo flexível são 

definidas. A partir da abordagem de Lagrange, a forma final da equação diferencial de 

movimento de um corpo flexível, em termos das suas coordenadas generalizadas, é 

descrita pela Equação 9.31: 

(9.18) 

Sendo, 

 �, ��	S	�G	- Coordenadas generalizadas do corpo flexível e suas derivadas no 

tempo 

y��- Força gravitacional generalizada 

��  - Forças generalizadas aplicadas 

� - Equações algébricas de restrição 

λL - Multiplicadores de Lagrange para as restrições 

���� - Matriz de massa generalizada do corpo flexível 

�����  - Derivada no tempo da matriz de massa de corpo flexível 

�z�� - Matriz de rigidez generalizada 

�r� - Matriz de amortecimento modal 

��6��	��  - Derivada parcial da matriz de massa com respeito às coordenadas generalizadas 

do corpo flexível 
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9.2 ROTINA EM MATHEMATICA PARA OBTENÇÃO DO SISTEMA EM 

ESPAÇO DE ESTADO 
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9.3 ROTINA EM MATLAB PARA CÁLCULO DAS FREQÜÊNCIAS ANALÍTICAS  

clear all; 

H = 1.75; % patients height [m] 

M = 75; % patients weight [kg] 

L1 = 0.2645*H; 

L2 = 0.2655*H; 

d1 = L1/2; 

d2 = L2/2; 

m1 = 0.1*M; 

m2 = 0.0465*M; 

%Moments of inertia of the thin beams 

I1 = (1/3)*m1*L1*L1; 

I2 = (1/3)*m2*L2*L2; 

g = 9.8; %gravity 

syms w; 

S = solve('(I1*I2+m2*L2^2*I2-m2^2*d2^2*L1^2)*w^4-
(m1*g*d1*I2+m2*g*L1*I2+m2*g*d2*I1+m2^2*g*d2*L1^2)*w ^2+m1*m2*g^2*d1*d2+m2^2*g^2*d2
*L1=0'); 

w1=-((g*(I1^2*d2^2*m2^2 - 2*I1*I2*L1*d2*m2^2 - 2*I1*I2*d1*d2*m1*m2 + 2*I1*L1^2*d2^2*m2^3 
+ I2^2*L1^2*m2^2 + 2*I2^2*L1*d1*m1*m2 + I2^2*d1^2*m1^2 + 2*I2*L1^3*d2*m2^3 + 
2*I2*L1^2*d1*d2*m1*m2^2 - 4*I2*L1*L2^2*d2*m2^3 - 4* I2*L2^2*d1*d2*m1*m2^2 + 
L1^4*d2^2*m2^4 + 4*L1^3*d2^3*m2^4 + 4*L1^2*d1*d2^3*m1*m2^3)^(1/2) + L1^2*d2*g*m2^2 + 
I2*L1*g*m2 + I2*d1*g*m1 + I1*d2*g*m2)/(- 2*L1^2*d2^2*m2^2 + 2*I2*L2^2*m2 + 2*I1*I2))^(1/2); 

w2=-((L1^2*d2*g*m2^2 - g*(I1^2*d2^2*m2^2 - 2*I1*I2*L1*d2*m2^2 - 2*I1*I2*d1*d2*m1*m2 + 
2*I1*L1^2*d2^2*m2^3 + I2^2*L1^2*m2^2 + 2*I2^2*L1*d1*m1*m2 + I2^2*d1^2*m1^2 + 
2*I2*L1^3*d2*m2^3 + 2*I2*L1^2*d1*d2*m1*m2^2 - 4*I2*L1*L2^2*d2*m2^3 - 
4*I2*L2^2*d1*d2*m1*m2^2 + L1^4*d2^2*m2^4 + 4*L1^3*d2^3*m2^4 + 
4*L1^2*d1*d2^3*m1*m2^3)^(1/2) + I2*L1*g*m2 + I2*d1*g*m1 + I1*d2*g*m2)/(- 
2*L1^2*d2^2*m2^2 + 2*I2*L2^2*m2 + 2*I1*I2))^(1/2); 

w3=((g*(I1^2*d2^2*m2^2 - 2*I1*I2*L1*d2*m2^2 - 2*I1*I2*d1*d2*m1*m2 + 2*I1*L1^2*d2^2*m2^3 
+ I2^2*L1^2*m2^2 + 2*I2^2*L1*d1*m1*m2 + I2^2*d1^2*m1^2 + 2*I2*L1^3*d2*m2^3 + 
2*I2*L1^2*d1*d2*m1*m2^2 - 4*I2*L1*L2^2*d2*m2^3 - 4* I2*L2^2*d1*d2*m1*m2^2 + 
L1^4*d2^2*m2^4 + 4*L1^3*d2^3*m2^4 + 4*L1^2*d1*d2^3*m1*m2^3)^(1/2) + L1^2*d2*g*m2^2 + 
I2*L1*g*m2 + I2*d1*g*m1 + I1*d2*g*m2)/(- 2*L1^2*d2^2*m2^2 + 2*I2*L2^2*m2 + 2*I1*I2))^(1/2); 

w4=((L1^2*d2*g*m2^2 - g*(I1^2*d2^2*m2^2 - 2*I1*I2*L1*d2*m2^2 - 2*I1*I2*d1*d2*m1*m2 + 
2*I1*L1^2*d2^2*m2^3 + I2^2*L1^2*m2^2 + 2*I2^2*L1*d1*m1*m2 + I2^2*d1^2*m1^2 + 
2*I2*L1^3*d2*m2^3 + 2*I2*L1^2*d1*d2*m1*m2^2 - 4*I2*L1*L2^2*d2*m2^3 - 
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4*I2*L2^2*d1*d2*m1*m2^2 + L1^4*d2^2*m2^4 + 4*L1^3*d2^3*m2^4 + 
4*L1^2*d1*d2^3*m1*m2^3)^(1/2) + I2*L1*g*m2 + I2*d1*g*m1 + I1*d2*g*m2)/(- 
2*L1^2*d2^2*m2^2 + 2*I2*L2^2*m2 + 2*I1*I2))^(1/2); 

f1=w1/2/pi 

f2=w2/2/pi 

f3=w3/2/pi 

f4=w4/2/pi 
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9.4 ROTINA SCILAB – INTEGRAÇÃO NUMÉRICA NÃO LINEAR  

Arquivo Sce: 

clear all  
// Carregar a funcao que implementa o modelo matematico do sistema 
exec("C:/Humberto/TFIII/Scilab/Sistema_amort_zero_torque_zero.sci"); 
//Definir a freqüência da senoide 
w=0; 
// Definir a condicao inicial: (5 graus inclinado) 
y0=[0;0;%pi;%pi/2];          
// Definir o vetor t de instantes de tempo: 
t=0:0.01:10;    
// Comando que realiza a simulacao numérica: 
y=ode(y0,t(1),t,list(f,entrada1,entrada2));   
//Plotando o resultado  
//figure(1); 
//plot2d(t,y(1,:)) 
//T=list("Oscilação livre - Velocidade angular da coxa","Tempo t [s]","Teta1dot 
[rad/s]");  
//xtitle(T(1),T(2),T(3)); 
//xgrid(2) 
 
//figure(2); 
//plot2d(t,y(2,:)) 
//T=list("Oscilação livre - Velocidade angular da canela","Tempo t [s]","Teta2dot 
[rad/s]");  
//xtitle(T(1),T(2),T(3)); 
//xgrid(2) 
 
figure(3); 
plot2d(t,y(3,:)) 
T=list("Oscilação livre - Posição angular da coxa","Tempo t [s]","Teta1 [rad]"); 
xtitle(T(1),T(2),T(3)); 
xgrid(2) 
 
figure(4); 
plot2d(t,y(4,:)) 
T=list("Oscilação livre - Posição angular da canela","Tempo t [s]","Teta2 [rad]"); 
xtitle(T(1),T(2),T(3)); 
xgrid(2) 
 
y_trans=y'; 
csvWrite(y_trans, "C:/Humberto/TFIII/Scilab/saida_osc_livre_ortogonal.csv"); 
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Arquivo Sci: 

//funções do sistema com torque zero (fator 0 multiplicando u e v) e sem amortecimento 
 
function [ydot]=f(t, y, T1, T2) 
  ydot=[-((1.* (-1.*T2(t)+0.000*y(2)+7.9309*cos(y(3)+y(4))-
0.374211*y(1)*y(2)*sin(y(4))+0.374211*y(1)* (y(1)+y(2))*sin(y(4))))/(0.250416+0.37
4211*cos(y(4))))+(0.250416*(-1.* (1.5315239999999999+0.748422*cos(y(4)))* (-
1.*T2(t)+0.000*y(2)+7.9309*cos(y(3)+y(4))-
0.374211*y(1)*y(2)*sin(y(4))+0.374211*y(1)* (y(1)+y(2))*sin(y(4)))+(0.250416+0.374
211*cos(y(4)))* (-1.*T1(t)+0.00000*y(1)+32.83*cos(y(3))+7.9309*cos(y(3)+y(4))-
0.374211*y(1)*y(2)*sin(y(4))-
0.374211*y(2)* (y(1)+y(2))*sin(y(4)))))/((0.250416+0.374211*cos(y(4)))* (-
0.32080994092799997+0.*cos(y(4))+0.14003387252100002*cos(y(4))^2)); 
-(1.* (-1.* (1.5315239999999999+0.748422*cos(y(4)))* (-
1.*T2(t)+0.000*y(2)+7.9309*cos(y(3)+y(4))-
0.374211*y(1)*y(2)*sin(y(4))+0.374211*y(1)* (y(1)+y(2))*sin(y(4)))+(0.250416+0.374
211*cos(y(4)))* (-1.*T1(t)+0.00000*y(1)+32.83*cos(y(3))+7.9309*cos(y(3)+y(4))-
0.374211*y(1)*y(2)*sin(y(4))-0.374211*y(2)* (y(1)+y(2))*sin(y(4)))))/(-
0.32080994092799997+0.*cos(y(4))+0.14003387252100002*cos(y(4))^2);y(1);y(2)] 
endfunction 
 
function [u]=entrada1(t) 
u=sin(w* t)*0; 
endfunction 
 
function [v]=entrada2(t) 
v=sin(w* t)*0; 
endfunction 
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9.5 MODELO DO MECANISMO NO MOTION VIEW  

////////////////////////////////////////////////////////////////////// 

 Altair HyperWorks 

 Version : HWVERSION_12.0.115-HWDesktop_Apr 15 2014_01:21:34 

 Model : The Model 

 Customer ID :  

 Date : 05/12/14 12:15:33 

////////////////////////////////////////////////////////////////////// 

*BeginMDL( the_model, "The Model", "12.0.115-HWDesktop" ) 

  *StandardInclude(FILE) 

  *SetCurrentSolverMode(MotionSolve) 

  *Point( p_qua, "Quadril" ) 

  *Point( p_joe, "Joelho" ) 

  *Point( p_pe, "Pe" ) 

  *Point( p_cox_cm, "Coxa CM" ) 

  *Point( p_can_cm, "Canela CM" ) 

  *DataSet( ds_0, "Dataset 0", def_ds_0 ) 

  *Body( b_cox, "Coxa", p_cox_cm, , , ,  ) 

  *Body( b_can, "Canela", p_can_cm, , , ,  ) 

  *Graphic( gra_cox, "Coxa", CYLINDER, b_cox, p_qua, POINT, MODEL.p_joe, .075, gra_cox.r1, , 0.0, 
CAPBOTH ) 

  *Graphic( gra_pe1, "Pe1", CYLINDER, b_can, p_joe, POINT, MODEL.p_pe, .05, gra_pe1.r1, , 0.0, 
CAPBOTH ) 

  *Graphic( gra_pe2, "Pe2", CYLINDER, b_can, p_pe, VECTOR, MODEL.b_can.cm.yaxis, .05, 
gra_pe2.r1, .25, 0.0, CAPBOTH ) 

  *RevJoint( j_qua, "Quadril", B_Ground, b_cox, p_qua, VECTOR, MODEL.V_Global_Z ) 

  *RevJoint( j_joe, "Joelho", b_cox, b_can, p_joe, VECTOR, MODEL.V_Global_Z ) 

  *ActionOnlyForce( frc_t1, "T1", ROT, b_cox, p_qua, MODEL.Global_Frame ) 

  *ActionReactionForce( frc_t2, "T2", ROT, MODEL.b_can, b_cox, MODEL.p_joe, 
MODEL.Global_Frame ) 

  *Motion( mot_0, "Motion 0", JOINT, j_qua, ROT ) 
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  *Motion( mot_1, "Motion 1", JOINT, j_joe, ROT ) 

  *Output( o_teta1, "Quadril", EXPR, `rtod((AZ({the_model.b_cox.cm.idstring}))-
{the_model.ds_0.real_teta1.value})`, `rtod(WZ(30102050))`, `0`, `0`, `0`, `0` ) 

  *Output( o_teta2, "Joelho", EXPR, 
`rtod((AZ({the_model.b_can.cm.idstring},{the_model.b_cox.cm.idstring}))-
{the_model.ds_0.real_teta2.value})`, 
`rtod(WZ({the_model.b_can.cm.idstring},{the_model.b_cox.cm.idstring}))`, `0`, `0`, `0`, `0` ) 

  *SetReal( DS_Gravity.jgrav,           -9.81 ) 

  *SetReal( DS_Gravity.kgrav,           0 ) 

  *SetOption( DS_Units.op_length,         "METER" ) 

  *SetPoint( p_joe,                      0.462875*COS(the_model.ds_0.real_teta1.value), 
0.462875*SIN(the_model.ds_0.real_teta1.value) ) 

  *SetPoint( p_pe,                       0.462875*COS(the_model.ds_0.real_teta1.value) + 
0.464625*COS(the_model.ds_0.real_teta1.value+the_model.ds_0.real_teta2.value), 
0.462875*SIN(the_model.ds_0.real_teta1.value) + 
0.464625*SIN(the_model.ds_0.real_teta1.value+the_model.ds_0.real_teta2.value) ) 

  *SetPoint( p_cox_cm,                   (the_model.p_qua.x+the_model.p_joe.x)/2, 
(the_model.p_qua.y+the_model.p_joe.y)/2 ) 

  *SetPoint( p_can_cm,                   (the_model.p_joe.x+the_model.p_pe.x)/2, 
(the_model.p_joe.y+the_model.p_pe.y)/2 ) 

  *SetBodyInertia( b_cox,                      7.5, , 0.133908, 0.133908 ) 

  *SetBodyInertia( b_can,                      3.48, , 0.0626042, 0.0626042 ) 

  *SetState( b_cox,                      true ) 

  *Set( b_cox.usecm, true ) 

  *SetOrientation( b_cox.cm,                   TWOAXES, XY, DXDYDZ, 0.0, 0.0, 1.0, DXDYDZ, 1.0, 0.0, 
0.0 ) 

  *SetOrientation( b_cox.cm,                   TWOAXES, XY, POINT, MODEL.p_joe, DXDYDZ, 1.0, 0.0, 
0.0 ) 

  *Set( b_can.usecm, true ) 

  *SetOrientation( b_can.cm,                   TWOAXES, XY, POINT, MODEL.p_pe, DXDYDZ, 1.0, 0.0, 
0.0 ) 

  *SetMotion( mot_0,                      VEL, LIN, 0 ) 

  *SetMotion( mot_1,                      VEL, LIN ) 

  *SetForce( frc_t2,                     LIN, , LIN, , LIN, 7.93087 ) 

  *SetState( frc_t2,                     true ) 
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  *SetState( frc_t1,                     true ) 

  *SetState( mot_1,                      false ) 

  *SetState( mot_0,                      false ) 

  *SetForce( frc_t1,                     LIN, , LIN, , LIN, 0 ) 

  *SetForce( frc_t1,                     LIN, , LIN, , EXPR, `STEP(TIME,0,0,.1,1)*0` ) 

  *SetForce( frc_t2,                     LIN, , LIN, , EXPR, `STEP(TIME,0,0,.1,1)*0` ) 

  *SetReal( ds_0.real_teta1,            -90*PI/180+5*PI/180 ) 

  *SetOption( DS_MotionSolve_Simopts.analysis_type,       "Transient" ) 

  *SetReal( DS_MotionSolve_Simopts.end_time,       50 ) 

  *SetActiveAnalysis( NONE ) 

  *DefineDataSet( def_ds_0 ) 

    *Real( real_teta1, "teta1" ) 

    *Real( real_teta2, "teta2" ) 

  *EndDefine() 

*EndMDL() 
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9.6 MODELO ELEMENTOS FINITOS MATLAB  

clear all 

D=2*0.0254; E=7e9; L=0.4629; rho=8000; A=(pi*D^2)/4; 

% 2 elementos 

K=A*E/(L/2)*[1 -1 0;-1 2 -1;0 -1 1]; 

M=rho*(L/2)*A*[1/3 1/6 0;1/6 2/3 1/6;0 1/6 1/3]; 

disp('1'); 

W2e=sqrt(-eig(inv(M)*K)); 

W2e_ref=[0; 1*pi*sqrt(E/(rho*L^2)); 2*pi*sqrt(E/(rho*L^2))]; 

F2e=W2e/2/pi 

Fe2_ref=W2e_ref/2/pi 

 

 


