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RESUMO

A evolucdo da ciéncia e da tecnologia possibil@ooonstrucdo de sistemas
mecanicos cada vez mais complexos e detalhados.cAar modelos numéricos que
representassem adequadamente esses sistemasresseate complexidade, tornou-se
necessario o desenvolvimento de ferramentas gquesgmen de forma automatica as
equacOes de movimento. Foi dentro desse contexdp aqpartir da década de 1980,
ganharam espaco no universo das analises dinanusasistemas multicorpos

(multibody systems — MBS).

Originalmente, a técnica de multicorpos foi desérida para gerar o modelo
matematico de qualquer sistema mecéanico que pudesseodelado fisicamente como
um conjunto de corpos rigidos. Recentemente, corwvanco das tecnologias de
processamento e armazenamento de dados, permidurdeEm a inclusdo de corpos
flexiveis (deformaveis) nos modelos. Todos essegososao interligados por juntas,
influenciados por forgas, direcionados por movirasnprescritos e limitados por
restricoes.

Com as facilidades introduzidas principalmente @sminterfaces gréficas, os
softwares ficaram muito mais acessiveis passand@lsa sensacdo de que o0s
fundamentos teriam agora menor importancia o guexteemamente perigoso no

tratamento do problema.

Por outro lado os fundamentos teoricos, bastantsotidados em relacdo aos
sistemas multicorpos, sdo apresentados ainda daa ftnadicional sem buscar uma
ligacdo com as ferramentas modernas que estamgargi

O proposito deste trabalho é entdo compreenderzer faso de uma base
tedrica de multicorpos aliada a ferramentas congpartais para estudo de um modelo
de uma perna bi articulada com partes flexiveis emtas para aplicacbes em modelos

bipedes.



ABSTRACT

The evolution of science and technology enabled toastruction of
mechanical systems increasingly complex and detaile create numerical models to
adequately represent these systems and their giegeeomplexity, it became necessary
to develop tools that automatically generate theaggns of motion. It was within this
context that, from the 1980s, gained ground in Wheverse of multibody dynamic

analysis systems (multibody systems - MBS).

Originally, the technique was developed to gendtatenathematical model of
any mechanical system that could be physically fesdas a set of rigid bodies.
Recently, the advancing technologies of procesasimstorage of data, also allowed the
inclusion of flexible bodies (deformable) modeld! these bodies are connected by
joints, influenced by forces, driven by movementsespribed and limited by

restrictions.

With the facilities introduced mainly with graphicaterfaces, the software
became more accessible through a false sensehthdbwndations have now minor

importance which is extremely dangerous to treafpttoblem.

On the other hand the theoretical, rather cons@dlan relation to multibody
systems, are also presented in the traditional eranithout seeking a connection with
the modern tools that are emerging.

The purpose of this paper is to understand and ras&eof all the theoretical
basis of multibody combined with computational otd study a model of a leg bi-

articulated and flexible parts with a view to apptions in bipedal models.



SUMARIO
1 INTRODUGAO ..ottt enene e 1
P © 1= N | I Y O PP 2
3 ESTADO DA ARTE .. ettt e e e e e et e e e e naaan s 2
3.1 Problemas tiPIiCOS ....ccuuuiiiiiiiiiiiiiiii e a e e 3
3.2 Algumas areas de apliCAGAD ..........ceeeei e e 3
3.3 Modelamento cOm MUIICOIPOS .......ccooeeiiiieeceeeiie e B..
K Yo - W o = 1] o PP 7
3.5 DEINIGOES ..cooeiiiiiiie e e 8
4 METODOLOGIAS DE SOLUCAO DO PROBLEMA PROPOSTO................ 12
4.1 Ferramentas UtiliZadas .........ccccvviiiiiimmiieeiiiieeee e 14
5 APRESENTACAO E SOLUCAO DO PROBLEMA .......cvoeeemeeeceeeeeeeene 14
5.1 Modelamento do sistema péndulo duplo em espacgstddc....................... 16
5.2 Validacgéao e solucbes do modelo — freqiiéncias natdeesistema................ 20
5.2.1 - Determinacgao analitica das frequénciagaiatdo péndulo duplo............. 20
5.2.2 — Frequéncias naturais através da transf@madrourier ........................... 21
5.2.3 — Frequéncias naturais através das matreestddo linearizadas............... 24
5.2.4 — Andlise das frequiéncias atravées do sislieearizado usando solver
MOTIONSOIVE ...t 27
5.2.5 Quadro geral comparativo entre freqUENCIBF A .............cvvviveieirieeeeeennn. 28
5.3 Validacéao e solucbes do modelo — grandes deslodamen........................ 28
5.4  FreqUéncias naturais de COMPONENLES.......cccceveurruuiiiiiieiieeeeeeeeeeeeeeeeieennnnns 33

5.4.1 Frequéncias naturais — forma analitiCa ... . e eeeeeeeerriiiniiiiiinneeeneen. 33

5.2.2 Frequéncias naturais — forma discretizadalementos finitos................... 34
6 Modelamento e solucdo em ambiente motionsolve derando a flexibilidade de
UM COMPONENTE ..ottt eeeie et st s+t e ettt e et et e e e e et n e e e ea s e s eenae e e eann e e e eannes 39
7 CONCLUSOES. ...ttt emems ettt e s snenens e 46
8 REFERENCIAS ..ottt ettt eee e 48
O APENDICES ...ttt emememst ettt ees s 49

9.1 Flexibilidade estrutural em analises dinamicas tod@de Craig Bampton . 49
9.2 Rotina em Mathematica para obtencao do sistemaspate de estado........ 58

9.3 Rotina em Matlab para calculo das frequénciastigadi.................ccceeeeennn. 60



Vi

9.4 Rotina Scilab — integracdo NUMErica NA0 lINE@L .vveveeeeiiiiiiiiiieeeiiiieeee, 62
9.5 Modelo do mecanismo N0 MOLIONVIEW .........ccceeeeeeeeeiiiiiieeece e 64

9.6 Modelo elementos finitoS Matlab .........cou v, a7



vii

LISTA DE FIGURAS

Figura 3-1 - Aplicacao de multicorpos em manufatura...........cccceeeeeiiiiieeeeeeeeeeeeenn, 3
Figura 3-2 - Aplicacao de multicorpos a motore®mIBUSIAO ..............vvvvvviiiiiiiieeeeeennnn. 4
Figura 3-3 - Aplicacdo de multicorpos a um veiaompleto ...........ccooeeeeeeiicciiivninnee, 5
Figura 3-4 - Aplicacao de multicorpos em autOmMAaGAD.............uvvvvrriiiiireeeeeeeeeeeeen. 6
Figura 4-1 — Fluxo das solugdes usadas nesteti@bal................ccevveviiiiiiiine. 13
Figura 5-1 - Modelo referéncia - membro iNferior............ccccceeiiiiniiiieees 15
Figura 5-2 - Modelo simplificado - pndulo dUuplo.......coovviiiiiiiiiiie e, 15
Figura 5-3 - Angulos de refer@ncia adotadoS .o vcovriveeeeeieeeieceeeeee e 16
Figura 5-4 - Angulos para determinacéo das freqa8MmatUrais..............c.ccceevreveneene. 20
Figura 5-5 - Péndulos inclinados alinhados a §8atacao de equilibrio ..................... 22
Figura 5-6 - Posicéo da coxa - integracéo do sestem espaco de estado (néo linear)
.............................................................................................................................. 22
Figura 5-7 - - Posicdo da canela - integracddsteraa em espaco de estado (n&o

T g TST= U P TRR 23
Figura 5-8 - FFT do deslocamento da canela ... 24
Figura 5-9 - Modelo do péndulo duplo em ambientaidhdy/iew..............cccevvvevevnnnnnns 29
Figura 5-10 - Posicao inicial - grandes deslocam®nt.............ccvvvvviiiiiierieeeeeees o 29
Figura 5-11 - Angulo da coxa - grandes deslocanseniategracio do modelo n&o
linear em esSPaco de €StAU0 .........oeevvvieieeeeeeiee e e e e e e e e e e e 30
Figura 5-12 - Angulo da canela - grandes desloctmaenintegracéo do modelo ndo
linear em eSPAaCO € ESAUOD .......eviiiiiiieeeeeeei e 30
Figura 5-13 - Angulos da coxa e canela sobrepesjcandes deslocamentos — solucéo
0O SOIVEr MOLIONSOIVE ...ttt vt e e aa e e e e e e e e e e eees 31
Figura 5-14 - Comparacao da solucao por integrdo&stema em espaco de estado e
do MotionSolve — grandes desloCamentos .....cceeeeeevvviviieiiiiiiiiee e 31
Figura 5-15 — Tracado da ponta do péndulo até\Vasta 3D ............cceeevvvvvvvvnnninnnnnn. 32
Figura 5-16 — Tracado da ponta do péndulo até-A\asta 2D ...........cccevvvvvvvnnninnennn. 32
Figura 5-17 - Exemplos de estruturas 6sseas enmentemfinitos .............cccceeeeeeeeee. 35
Figura 5-18 - Modelamento da coxa em elementomfni..........ccccoevveeiiiiiiiiiiiiiiiiiinn, 38
Figura 6-1 - Modelo péndulo duplo com corpo flexivgosicao vertical ................... 41
Figura 6-2 — Esquema do modelo flexivel com 2 efd0o®...............ccooeciviviiiiiieennnnn. 41
Figura 6-3 - Deslocamentos da parte flexivel - gaxsivertical ..........cccevvvvvviieeenennn.. 2.4
Figura 6-4 - PEndulo flexivel @ 5°........ooooeeeeiiiii e 43
Figura 6-5 - Respostas do péndulo flexivel em agéo livre. Posicéo inicial 5°........ 43
Figura 6-6 - Péndulo flexivel ortogonal — condi@oial ................ceeeeeeviiiiiiiiiiiiiins 44
Figura 6-7 - Respostas péndulo flexivel ortogonal..............cccoovvvvvviiiiiciiiee e 44
Figura 6-8 - Deformacdes no instante do pico 1,A7€) .......cccceevveeeeeeiiieiiiieeennnnnn 45
Figura 6-9 - Deformacdes no instante do pico 2,48€) ... 45,
Figura 6-10 - Deformacdes no instante do pico 3,08S)...........cceeeevviivevviiinnnen. 45
Figura 9-1 - SUperpoSiCa0 MOal ...........uuuuuiiiiiiiieee e 49

Figura 9-2 - Vetor posicédo do ponto P’ no corpaiftel apos a deformacéo............... 56



viii

LISTA DE TABELAS

Tabela 3-1 - Historico evolutivo das teorias e g@ipios utilizados em dinamica........... 7
Tabela 5-1 - Parametros do Mmodelo.........coo i 16
Tabela 5-2 - Frequéncias naturais obtidas pelodi8DIve ..............cccevvviiiiiiiiiiinnnn. 28
Tabela 5-3- Quadro comparativo das frequénciagaiatabtidas............cccceeeeeeeiiieeeee. 28
Tabela 5-4 - Frequéncias naturais calculadas ceatver de elementos finitos

(@] 011571 £ U X AP 38

Tabela 5-5 - Comparacéo das frequéncias naturasmponente ............cccccceeeeeeennn. 39



1 INTRODUCAO

O termo multicorpos se destaca como um termo ganépie engloba uma
ampla gama de sistemas tais como mecanismos, awd@ e caminhdes (incluindo
sistemas de direcdo, suspensoes, etc.), robds, tnedgquinas industriais (téxtil, de

embalagens, etc.), estruturas espaciais, antetébtes, o corpo humano, entre outros.

Com o aumento do poder de calculo e reducdo no®ssus uso do
computador para simulagdo cinematica e dindmicaet@®@rgido como uma poderosa
ferramenta para a analise e projeto de sistemascorpbs em ramos como a industria

automobilistica, aeroespacial, da robdtica, magin@mecanica, entre outros.

A atencdo recebida recentemente pode ser medida guentidade de
programas CAE (Computer Aided Engineering) que ssdifpram no mercado de
engenharia, um fenbmeno semelhante ao produzidonpé&iodo dos elementos finitos
no inicio dos anos oitenta para projetos estrigurBormulacdes eficazes para a
dindmica e confiaveis métodos computacionais desehgm um papel fundamental na

concretizacao da confiabilidade das ferramentandése multicorpos [1].

Reducdes do tempo de projeto e dos custos envehpdacipalmente pela
diminuicdo da quantidade de protétipos fisicos tafdos e que agora tém foco na
validacdo da simulagdo computacional além da pddsitbe de otimizacdo das

solucdes sao os grandes atrativos para a industria.

Pelo r4pido surgimento das ferramentas de analigécorpos criou-se um
vacuo de mao de obra capacitada para fazer pral@ib@va tecnologia, principalmente

em Nnosso pais.

Os programas de analise multicorpos vém sendo amdos no sentido de
permitir uma interface mais amigavel e intuitivaigpa usuario. H4 poucos anos se quer
existiam interfaces gréaficas na analise computatiorgue exigia do usuario, além da
habilidade em operar o programa, um conheciments apgofundado dos fundamentos

tedricos, tanto para implementar o problema qupata interpretar os resultados.

Com as facilidades introduzidas principalmente @sminterfaces gréaficas, os

softwares ficaram muito mais acessiveis passand@lsa sensacdo de que o0s



fundamentos teriam agora menor importancia o guexteemamente perigoso no

tratamento do problema.

E preciso saber prever resultados, conhecer asadiieis e operar com 0s
parametros de simulacdo para obter uma correlaghiideel com a realidade.

Por outro lado os fundamentos teoricos, bastanteatidados em relagéo aos
sistemas multicorpos, sdo apresentados ainda daa ftnadicional sem buscar uma

ligacdo com as ferramentas modernas que estamgargi

Um propoésito deste trabalho € entdo construir urtemah que sirva de base
para o inicio na area de dinamica multicorpos, ssgrando de forma sintética os
fundamentos tedricos da dindmica e também do céloinputacional fazendo uma
ligacdo direta com os principais recursos e capdeisl da analise computacional da

dindmica multicorpos.

2 OBJETIVO

O objetivo deste trabalho € estudar um modelo ddyé duplo com vistas a
um modelo bipede e compreender as técnicas decorplhis desde o fenébmeno fisico,
passando pela modelagem matematica, métodos deaspldinalizando com a

implementacdo em um programa comercial de multasorp

Desta forma serdo expostos 0s passos mais relevpata solucdo de um
problema de multicorpos, como modelamento em espmbgoestado, integracéo
numérica, determinacdo de frequéncias naturaissiensa, componentes e sera feita

uma introdug&o ao uso de corpos flexiveis em setenulticorpos.

3 ESTADO DA ARTE

Os problemas de multicorpos séo resolvidos usanalooedagem de divisao
para simplificacdo, ou seja, fragmentar sistemaspbexos em blocos mais simples, e
entdo em blocos ainda mais simples, e assim patedi®s problemas de sintese séo
resolvidos comegando com blocos conhecidos, e mondo formas de coloca-los em

conjunto para alcancar comportamentos complexos.



3.1 PROBLEMAS TiPICOS

Profissionais da indUstria muitas vezes que-se de que os softwares ¢
usados sem a devida atencéo. (frequéncieessas queixas sao justificacQuestiona-
se o porqué dempregar o tempo e esforco, além de dinheiro, coosm desse
ferramentas se os resultados ndo ajudam o engenBRaina piorar a situacéo, 0 uso
ferramentas pode até mesmo dar respostas lors metas de projeto reais. Claro
essa critica poterad de ferramentas CAE se aplica a todas as fertas
computacionais. A modelagem do problema e inteapéet dos resultados deve
muito criteriosa. Assim, antes de rever a teoriajtié vermos algumas areas
aplicacéo e as questdes relevantes a modelagem e analise da dindmica multico

3.2 ALGUMAS AREAS DE APLI CACAO

Maquinas operatrizes

Figura 3-1 - Aplicacéo de multicorpos em manufatura

Maquinas operatrizes no que tange sua parte mec&diomuitas vezes
consideradas como uma tecnologia ultrapassada&muerto sentido, elas até séo, |
0 crescimento da utilizacdo dessas maquinas regmatepalmente aos anos entre 1¢
e 1960. Mas isso nao significa que a tecnologia/@ltou que prcetalas € uma tarefa
simples. Comum a todas elas, ha um objetivo praicipm grau de precisé
especificado. Para isso, 0 mecanismo deve prochiimentos variaveis e permitir
controle sobre esses movimentos. Condicbes de gimerpodem geralrnte ser
mantidas dentro de uma gama especifi, particularmente se 0 projetista pu



demonstrar uma ligacao entre as condi¢cdes de fuguTiento e a precisao da maqu
Questdes tipicas em um projeto deste tipo de eap@ip sdo sua vida util e o ¢
custo.  ponto da dindmica de multicorpos, os modelos modalcular e preve

forcas, localizacao de varios pontos ao longo optee duracéo de operaci
Maquinas de embalager

Esta classe abrange as maquinas que podem fazemcOpe tais com
acondicionamewt rotulagem, dobra empilhamento e impres Se considerarmos q
quase todos os bens desde a pasta de dentesaatdmm®veis devem ser embalado
tamanho desta indastria é destacavel. As preocapagfhbientais estdo levandc
mudancgas nos materiausilizados, o que forgou os desenvolvedores a exent a su.
criatividade. De um ponto de vista distante, asuim@s de embalagem sdo semelh.
as maquinas operatrizes. As condicdes de operae@iend ser controladas e
movimento preciso e automaticos diferencas decorrem, principalmente, da esca
uso. Maquinas de embalagem apli-se principalmente para a produgéo de itens
o volume de producéo é extremamente alto. Istafgigmque a abordagem do proje
muitas vezes pode sacrificar a veilidade do movimento para a economia e preci
E uma vez que a escala de producdo das mercadoisasem embalados € mu
grande, o projeto centie no tempo de movimento. Um projeto que reduznpdede
enchimento emum segundo pode ser muito atrie se o tempo de enchimento
pacote é da ordem de segundos. Na industria faumeagpor exemplo, velocidades

200.000 capsulas por hora ndo sao incor

Motores a combusta

Figura 3-2 - Aplicagdo de multicorpos a motores a combustdo

O projeto de um motor a combustao € uma area rudglfidinar que abranc
transferéncia de calor, combustao, vibragoes, Atccondicdes de operagdo sao me



previsiveis do que para as maquinas citadas amtente, entdo os engenheiros muitas
vezes tém de investigar e permitir operagcoes sevé@mmas recomendadas de operacao
sdao normalmente fornecidas, tal como o limite dagéo "red-line" para motores de
combustdo interna. De uma perspectiva da dinamigdéicorpos, a rotacdo de “red-
line” é um parametro interessante. Se um motor tdéeyhos funciona a uma velocidade
superior & recomendada, a for¢a exercida sobreokss e retorno das valvulas pode
ser alta o suficiente para que elas nao retorneteampo desejado, fenémeno conhecido

como “float". Isto, por sua vez, leva a perda aelirmento.

O interesse de uma analise de multicorpos estddiga calculo de forcas nos
componentes em varias condicfes de operacéo. festas sdo entdo utilizadas para
realizar o célculo de tensbes e verificacbes dégdadviotores modernos também
exigem formas bastante sofisticadas de controlemdeimento. Motores de alto
desempenho, por exemplo, podem alterar os tempabeattura das valvulas em funcéo

da condicéo de operacéo do motor.

Veiculos, avides, trens, navios...

Figura 3-3 - Aplicagdo de multicorpos a um veiculecompleto

Agrupar carros, caminhdes, 6nibus, motocicletagcletas, navios, avioes e
naves espaciais em um grupo é, obviamente, umdifstagho, mas que € bastante
apropriada a partir de da perspectiva de multicr@s graus de complexidade variam
de uma duzia de pecas em uma bicicleta para mélltepecas em veiculos maiores.
Esses veiculos tém, porém, exigéncias bastantdassii estabilidade, conforto,
seguranca e (na maioria, mas ndo em todos os aswE)Mia de operacdo. O primeiro



requisito, a estalidade, é de particular interesse. Uma vez quecaslicoes di
funcionamento tendem a variar largamente, um grasfteco é feito para proporcior
um controle eficaz sobre o comportamento do veididmmbrando que o movimentc
razoavelmente previsiveD que € imprevisivel sdo os comandos que o condptica,
as condicbes que a pista fornece, e assim porediBnbjetos modernos tém tido |
aumento constante na quantidade de eletrénica eatd#usada para ajudar a cond

o veiculo com seguranga.

Robdtica

Figura 3-4 - Aplicacdo de multicorpos em automacao

A parte mecanica de um robd é o problema clasgirdese de mecanism
ou seja, como montar elementos mecanicos que paserevermovimentos pr-
determinados. Em vérios casos, a inspiracdo € daaca partir da biologi
assemelhandse a articulagdes humanas ou de animais. -se, entdo, tragar ¢
movimentos, predizer a velocidade de diferentegepato conjunto e prever as for
gue serdo experimentadas e que podem ser geraslaobél. Um elevado grau
integracdo com sistemas de controle eletrénico éamé essencial dado o estado &
da tecnologia da robotica.

3.3 MODELAMENTO COM MULTI CORPOS

Num projeto de um produto com cegrau de complexidade, duas abordac
distintas podem ser feitas: a primeira sobre o astamento de um componente
outra sobre a perspectiva da dinamica de um sistEnmeciso entender clarame
suas diferencas, bem como a interacdo que existke elas. A andlise c
comportamento do componente € muitas vezes fe#adosferramentas baseadas

método dos elementos finitos. E, portanto, neciesséanhecer os carregamentos



servem de condicdo de contorno para este tipo ddisean JA& o estudo do
comportamento do sistema é melhor realizado usandbordagem de multicorpos.
Uma vantagem é que as forgas calculadas a panimdeanalise de multicorpos podem
ser usadas para fornecer dados para uma analiseomiponente. Modelos de
multicorpos trazem uma perspectiva simplificada awmponente. Ele pode, por
exemplo, ser representado apenas como um corpl tigizendo apenas informacgdes
de suas inércias e centro de massa, por mais ceen@le seja a sua geometria. Neste
caso os calculos envolvidos ficam bastante sincplifos, pois envolvem as leis de
Newton e seus formalismos decorrentes. Computdon@mée, enquanto uma analise de
elementos finitos pode demorar desde minutos at®, dima andlise de multicorpos

normalmente leva segundos para o calculo.

A abordagem de modelos complexos construidos & piErtmodelos mais

simples € a esséncia dos sistemas de multicorpos.

3.4 TEORIA BASICA

No passado, a obtencdo das equacfes dinamicasviteentos para sistemas
mecanicos era realizada manualmente, através dmggd de principios fisicos em
suas variadas formas [2].

Partindo-se das Leis de Newton, foram desenvolvdass maneiras de se
obter essas equacfes que representam 0 compomaciedimico de um sistema
mecanico. A evolucdo historica dessas teorias aceantde forma gradual, sendo que

seus principais fatos séo resumidos na Tabela 3-1.

Tabela 3-1 - Historico evolutivo das teorias e priripios utilizados em dinamica

A particula livre, o elemento mais simples de um sistema multicorpo. € o tema das

1687 Newton i
Equacoes de Newton.
1743 d’Alembert Sistema de corpos vinculados. com separacdo entre forcas de acdo e reagfo.
1775 Eul Introducéo de corpos rigidos. As vinculagdes sdo modeladas com o Principio do
5 uler

Corpo Livre nas Equacodes de Newton-Euler.

Aplicacio do Principio Variacional considerando os vinculos cinematicos do sistema.
1788 Lagrange . N .
Os resultados para as coordenadas generalizadas sao as Equacoes de Lagrange.

1913 Jourdain Extenséo do Principio de d’Alembert para sistemas holonémicos

1977 Kane e Introducio de velocidades generalizadas para sistemas nido holonomicos. resultando

Levinson em uma descricdo compacta de sistemas multicorpos.




A evolucédo da ciéncia e da tecnologia, por outtio lgpossibilitou a construcao
de sistemas mecanicos cada vez mais complexosathabtkts. Para criar modelos
numeéricos que representassem adequadamente es$esiasi e sua crescente
complexidade, tornou-se necessario o desenvolvorgmfterramentas que gerassem de
forma automatica as equacdes de movimento. Foialdesse contexto que, a partir da
década de 1980, ganharam espaco no universo diseandindmicas os sistemas
multicorpos (multibody systems — MBS). De forma s#tante a década anterior,
quando o método de elementos finitos rapidamenfendiu-se para as analises
estruturais, repetia-se para a técnica de MBS onfieno de popularizacdo, dessa vez

para as analises transientes.

Originalmente, a técnica de multicorpos foi desérida para gerar o modelo
matematico de qualquer sistema mecanico que pudesseodelado fisicamente como
um conjunto de corpos rigidos. Recentemente, comvanco das tecnologias de
processamento e armazenamento de dados, permidurdeEm a inclusdo de corpos
flexiveis (deformaveis) nos modelos. Todos essegososao interligados por juntas,
influenciados por forgas, direcionados por movirasnprescritos e limitados por

restricoes.

3.5 DEFINICOES

3.5.1.1 Estatica, Cinematica e Dinamica

A mecénica pode ser dividida em trés ramos: eatalinamica e cinematica.
A estética abrange os efeitos das forcas sobrerp®s na auséncia de movimento. A
dindmica é o estudo da acéo das forcas sobre pgscem movimento. A cinematica é
o estudo do movimento relativo entre os corpos.tddwezes € utilizada a cinematica
para determinar o projeto inicial para atingir ovinento desejado e ndo ha nenhuma
referéncia a massa ou forgcas. Por exemplo, podéibeada para calcular o movimento
necessario para um robd para realizar certa tdeefguanto a dindmica pode prever as

forcas necessérias para este movimento [3].

3.5.1.2 Mecanismo
Denomina-se mecanismo a um conjunto de elemengidosi moveis uns

relativamente a outros, unidos entre si mediarfexafites tipos de junc¢des, chamadas



pares cinematicos, cujo propoésito € a transmiskaoteansformacdo de movimentos e

forcas. S&o, portanto, as abstracdes tedricasndoftamento dos sistemas reais.

3.5.1.3 Conservacéo da quantidade de movimento linear

Na auséncia de forgas externas, a velocidade deoymo ou um conjunto de
corpos permanece constante. Quando aplicada uige forelacdo com a aceleragao é
representada pela equacdo F = ma. Outra forma slreder € dizer que a forca
envolvida numa colisdo € igual a taxa de variaggiandmento. Colisdes podem ser
elasticas ou inelasticas. ColisGes elasticas ceasern energia cinética, mas colisbes
inelasticas ndo. Ambas, naturalmente, conservanpalso. O coeficiente de restituicao
€ uma medida da elasticidade da colisdo. Ele éediional, uma vez que € a razéo
entre as diferencas nas velocidades antes daa@disi&pois da colisdo, sendo 1 para

uma colisdo perfeitamente eléstica e 0 para uniséooinelastica.

3.5.1.4 Conservacdo do momento angular
A lei da conservacédo da quantidade de momentorligeando aplicada ao
movimento angular, conduz a equacéo Tos dbnde T € o binario, | € o momento de

inércia em torno do eixo de rotacaa, € a aceleracdo angular.

3.5.1.5 Graus de Liberdade
Graus de liberdade é um termo genérico utilizadareferéncia a quantidade
minima de nimeros reais necessarios para deteroongsletamente o estado fisico de

um dado sistema.

Calcular o nimero de graus de liberdade de um nmuamado é uma tarefa
trivial, como veremos adiante quando discutirmos@sacoes de Gruebler. Um corpo
rigido no espaco tridimensional tem 6 graus dedidbge, ou seja, translacdo ao longo

dos 3 eixos, e rotagdes sobre os 3 eixos.

3.5.1.6 Restricdes

Uma restricdo é uma condicdo que remove um ou gnaiss de liberdade. Em
multicorpos, uma restricdo é geralmente impostaidelo uma junta. Por exemplo, se
um sistema consiste de 2 corpos que nao estadm$igad ao outro, o sistema tem 12
graus de liberdade (6 para cada corpo). Se elés kgados por uma junta, no entanto,
0 numero de graus de liberdade sera inferior &&2 numero de restricdes é mais do

que os graus de liberdade do sistema, ele é descnho sobrerrestrito. Um sistema



10

excessivamente restrito normalmente ndo pode sadouem uma analise de
multicorpos. Computacionalmente os softwares ddicoupos descartam as restricoes

desnecessarias.

3.5.1.7 Articulacdes ou juntas

Do ponto de vista matematico, uma junta € apenasrasiricdo que relaciona
0 movimento entre um ou mais graus de liberdadend®u mais corpos. No contexto
da modelagem multicorpos, uma articulacdo é gerabnelefinida utilizando um
equivalente fisico. A maioria das juntas elimina ammais graus de liberdade. No
entanto, se a junta é redundante, ela ndo afegeaas de liberdade do sistema. Juntas
redundantes também s&o chamadas de juntas passtu@spresenca ou auséncia nao

faz qualquer diferenca para o comportamento do nETa.

3.5.1.8 Equacéo Gruebler e o Critério Kutzbach

Calcular os graus de um sistema muitas vezes n#inaétarefa facil. Se o
movimento se restringe a um plano (isto é, se tamognecanismo planar), podemos
usar a Equacao de Gruebler: F =3 (n-1)-2I-h, dhd@&o os graus de liberdade totais do
mecanismo, n € o numero de juntas , | € 0 nUmepadks de inferiores e H € 0 nimero
de pares mais elevadas. Deve-se ter cuidado acausamula, ela ndo é infalivel no
sentido de que néo pode ser aplicada cegamentgrewsa de algum julgamento.

3.5.1.9 Tipos de Analise
Com base nas entradas de simulacdo do modelo ftesss de multicorpos
formulam as equacdes de movimento que caracteizaistema. Os diversos tipos de

simulacéo se referem ao processo de resolverexpiagdes computacionalmente.

Os softwares de multicorpos fornecem basicamentesegsiintes tipos de

simulagéo:
Transiente

Pode ser realizada em sistemas com zero ou mais ge liberdade. Para
sistemas com zero grau de liberdade, a simulag@amdtica € usada. Para sistemas

com mais do que zero graus de liberdade, a sinmfdigamica é usado.

Cinematica
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Um modelo com zero graus de liberdade é definidmac@inematico. As
equacoes algébricas que definem as restricOes fagpgor varias articulacdes e
movimentos aplicados especificam completamente wimemto do sistema. As
restricoes de tempo e seus derivados sdo usadas cpdnular o deslocamento,
velocidade e aceleracoes. As equacOes de equitieriorca sao utilizadas para calcular
algebricamente as forcas de reacdo de restricdsolécdo €, portanto, de natureza

algébrica.
Dinamica

A simulacdo dinamica refere-se a integracdo numémias equacdes
diferenciais ordinérias e diferenciais algébricA&s.equacbes algébricas resultam das

restricdes no modelo. E aplicavel aos modelos cmnow mais graus de liberdade.

Ela considera as aceleracdes (linear, angulanitteye e de Coriolis), forcas e
restricbes. Em outras palavras, ela resolve as¢cégaado movimento em sua forma
mais geral, incluindo os efeitos ndo lineares. pomite nos desenvolver simulagoes

precisas de complexos sistemas mecanicos.
Simulacao Estatica

A simulacdo estatica é Gtil para encontrar as gardices de equilibrio para
0s modelos com um ou mais graus de liberdade. Qilwgu € definido como a
configuracdo onde todas as forcas e momentos agimdodas as partes do modelo sdo
iguais a zero. Dois métodos comuns para a simulesgica sdo o Maximum Kinetic
Energy Attrition Method (MKEAM) e o Force Imbalanbtethod (FIM)

Quasi-Estatica

Fisicamente o método quasi-estatico significa queistema esta sendo

conduzido muito lentamente de modo a ndo exercdgaer dindmica transitoria.

Matematicamente, a simulacdo quasi-estatica ¢ wa@éacia de simulacdes
estaticas realizadas durante um periodo determitadoétodo é Gtil quando o modelo
contém forcas dependentes do tempo e estamos ssddms na sequéncia de

configuracdes de equilibrio que o modelo passa.

Linear
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Sistemas multicorpos quase sempre sao nao-linddéeslinearidades podem
surgir a partir de elementos de forcas com relagdastitutivas nao lineares, restricbes
ou cinemética. Em geral, os sistemas ndo-line@esgtoriamente dificeis de analisar.
Em estudos de sistemas de controle, por exempti® ger util trabalhar com o modelo
linearizado. Os softwares de multicorpos normaleettaizem ferramentas que

permitem extrair as matrizes do modelo linearizado.

3.5.1.10Integracéo Numérica

A equacdo diferencial de movimento é a seguinte:
Ma-+cv+ku=f(t)

Onde, m é a massa, ¢ 0 amortecimento, k a rigidgzvee u sdo aceleragéo,

velocidade e deslocamento.

Dado o estado inicial do corpo ou corpos, precisagabcular os estados dos
corpos ao longo do tempo. Isto é feito por intepaqpumérica da equacédo de

movimento.

4 METODOLOGIAS DE SOLUCAO DO PROBLEMA PROPOSTO

Sera proposto o estudo de um problema real de farrmpresentar todas as
etapas idealizadas para o desenvolvimento debt@hm A partir da apresentacdo desta
estrutura de abordagem, cada etapa sera entdoitalescexplorada com maior

profundidade.

O fluxo é apresentado a seguir.



Fenomeno Real

Modelo Fisico

Frequéncias do sistema

Integracao Numérica

odelamento em ambiente multicorpos

(Corpos Rigidos)

odelamento em ambiente multicorpos
(componente flexivel)

Figura 4-1 — Fluxo das solucdes usadas neste trabalho

13
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4.1 FERRAMENTAS UTILIZADAS

A fase inicial deste projeto esta focada em defing uma forma de
abordagem para o tratamento de problemas de diaamiglticorpos além nos

familiarizarmos com algumas das ferramentas coropmrtais disponiveis.
Podemos citar aqui trés programas que nos ajudata c@minhada.

O primeiro deles é o Mathematica desenvolvido palalfram capaz de
auxiliar no desenvolvimento e solucédo de equacOestermos literais. Trata-se de uma
importante alternativa as manipulacdes e resolugi@amente numeéricas. O programa
pode, por exemplo, realizar derivacoes, integragégebra de matrizes com termos na
forma literal. Seu uso poupa o engenheiro do tmmbahacante e com grande
probabilidade de erros ao se manipular expressddenmiticas complexas e com

elevado nimero de termos.

O segundo é o Scilab/Matlab, usado para computagderica semelhante ao

e que fornece um poderoso ambiente computacioeaicgpara aplicacdes cientificas.

O terceiro é o MotionView/MotionSolve/OptiStruct dampresa Altair
Engineering que forma um ambiente de andlise nouftas e componentes. O primeiro
serve de pré-processado (interface gréfica) damdendrada os parametros a serem
resolvidos matematicamente pelo solver (MotionSolpee retorna os dados de saida a
serem visualizados no poés-processador HyperViewbdEanndo seja gratuito, este
software é disponibilizado sem custo para a Paolitécda USP através da parceria com
o programa PACE (Partners for the Advancement oflaBorative Engineering

Education)

Os trés softwares sdo bastante complexos e comemgnfuncionalidades a
serem exploradas. Foge do escopo deste traballathaleiprofundamente cada um
deles. E importante, porém, termos uma vis&o gierastrutura como cada um trabalha

e também saber como proceder para simulagfes dgieamulticorpos.

5 APRESENTACAO E SOLUCAO DO PROBLEMA

O desafio € fazer um estudo do comportamento de pemnaa tendo como
elementos motrizes os esforcos aplicados por jeelpeadril, interessando determinar a

posicao e velocidades dos membros coxa e caneldaartstante.
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Figura 5-1 - Modelo referéncia - membro inferior

Comecaremos por propor um modelo fisico que ilustienémeno. O péndu

duplo é unexemplo simples gLo representa.

Figura 5-2 - Modelo simplificado - péndulo duplo
Temos doiorpos com massas e inércias defir e articulados por juntas ¢
revolucdo. Sobre sistema age a gravidade e em cada junta h& uor oo introdu:

torque ao sistema.

Os angulos queesdo usados de parametro bem como a posicao doses

sao apresentados a seguir:



16

Figura 5-3 - Angulos de referéncia adotados

O motor M1 (quadril) age com um torque sobre a&drre o motor M.

(joelho)age com um torque de par agéo e reacao nas bara

Iremos supor também amortecimentos nas articulageporcionais a

velocidades angulares.

Os parametros ficam definidos conforme a tabekgais

Tabela 5-1 - Parametros do modelo

Parametro Simbolo Expressao Valor (Sl)
Altura da pessoa H - 1,75
Massa da pessoa M - 75,00
Comprimento das barras L 0,2645*H 0,463
Posicdo do baricentro LG L/2 0,231
Massa da barra 1 m1l 0,1*M 7,50
Massa da barra 2 m2 0,0465*M 3,49
Momentos de Inércia da barra 1 1z1 1/12*m1*LA2 2,917
Momentos de Inércia da barra 2 1z2 1/12*m2*LA2 1,356

5.1 MODELAMENTO DO SISTEMA PENDULO DUPLO EM ESPACO DE
ESTADO

O equacionamento sera feito com o uso da mecamicLagrange, métod

bastante empregado na modelagem da dinamica nmptis

A mecanica de Lagrange ou mecanica lagrangiana & femmulacdo d
mecanica classica que combina a conservacdo do m@neem a conservacao
energia e é baseada num formalisescalar mais simples e geral, quando compara

formalismo vetorial de Newt [4].
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De acordo com o teorema de Lagrange, temos:
d [JL JL
Tl-_a[£ — 35, L=E.—E, (5.1)

Os Lagrangeanos de cada barra serdo calculadosmadapente, e depois

somados.
-Barral
e 52)
Ep1 = migye (5.3)

Com isso, obtém-se o Lagrangeano da barra 1.
m — 2 IZ . 2
L, = 71 ||VG1|| + ?191 —my19Ye1 (5.4)

Fazendo as substituicdes, temos:

.2 I;1 5 2 .
Ly = %LGlzel +261 —miglgisin (6)  (55)

-Barra2

Ecr =2 |[Veall” +2 (6, +6,)° 6

Ep, = mygyee (5.7)

Assim, o Lagrangeano da barra 2 é dado por:

Ly =2 |[Vel’ +2(6,+ 6,)" ~magye: 69

Substituindo as velocidades e fazendo as manipegatigonomeétricas, o

Lagrangeano da barra 2 é dado por:

LZ = % I:leélz + LGZZ(H.l + 9.2)2 + 2L1LG2COS(92) (9192 + 912)] +
IZZ (91 + 92)2 - ng(Ll Sln(Ql) + Lazsin (91 + 92)) (59)

2

-Aplicacdo do método de Lagrange
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-Barral

d|o(L,+Ly)| o(L,+L,)
Ty — TiamorTECIDO = E PY: - 9 0,
1

+B;*6;, (510

T. = d [6(L1+L2)] _ 0(L1+Lz)
17 ael o6, 864

O que é igual a:

Ty = [myLey® +my (Ly? + Lo + LiLocos(8,)) + Ly | 61 + [my (Le® +
L1LG2cos82+/z182— m2L1LG25in8262+281 62 +miglGicosd1+mlgllcosf1+L
GZcos B1+862+F1+61 (5.11)

-Barra2:

d|[o(L,+ L) o(Ly+Ly)
T2 - TZAMORTECIMENTO = dt ag- - 69
2 2

T, = d [6(L1+L2)] _ 0atly) | B,*6, (512

Tacl a6, 96,
O que é igual a:

Tz = [mz (LGZZ + Lchzcos(Qz)) + IZZ] 9"1 + [mzLGZZ + 122]8"2 -

mleLGZSin(Hz)éléz + mygLg, cos(6; + 6,) + mleLstin(Bz)Ql(49'1 + 92) + B, *

6, (5.13)
Vale ressaltar qug, eT, dependem das variavels, 6,, 6;,6,,6, e 6,.
POI’tantOTl = T1(91, 91, 91, 92, 92, 92) ETZ = T2(01’ 91, 91, 92, 92, 02)

Vamos analisar inicialmente o sistema a partir@&gdio de equilibrio estavel,
com as duas barras alinhadas na vertiégl=—pi/2 e 6, = 0), ou seja, quando a

pessoa esta em pé com a perna sem contatar o solo.

Temos as expressfes que relacionam os toques PLo®r os angulos e

velocidades angulares que foi encontrada com aoddathematica

9"1 = f(TL’ Tz,: 01, 91’ 03, 92)
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9"2 = f(T1,: Tz,’ 01, 91: 02, 92)

Podemos fazer a integracdo numérica do sistemaaacsando o método ¢

Runge Kutta descrito a seg
Seja umproblema de alor inicial especificado como:
y = flty), wlto) = vo
Entdo o método para este problema é dado pelamtEgaquacoe
h
Ynt1 = Yn + g (F1+ 2k + 2k5 + k)
tat1 =tn+ R

onde yn + 1 € a aproximacgéao por RK4 de y(tn +

[t un)

t h hk
n+2yn+21
h, h
n+ =k
( it 50
= [ty + h,yn + hk3)

Entdo, o proximo valor (yn+1) é determinado peltovatual (yn) somad
com oproduto do tamanho do intervalo (h) e uma inclicagdtimada. A inclinagcéo
uma média ponderada de inclinag

k1 é a inclinag&o no inicio do interve

k2 é a inclinacdo no ponto médio do intervalo, dsaa inclinacdo k1 pai
determinar o valor de yonponto tn + h/2 através do método de E

k3 é novamente a inclinagdo no ponto médio dovater mas agora usandc

inclinacao k2 para determinar o valor d
k4 é a inclinag&o no final do intervalo, com selorvg determinado usando |

Ao fazer amédia das quatro inclinagbes, um peso maior € gemia ac

inclinacdes no ponto méd
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O método RK4 é um meétodo de quarta ordem, significague o erro por

passo é da ordem de h5, enquanto o erro total dadmtem ordem h4.

Note que as formulas acima séo validas tanto pargdés escalares quanto

para fungdes vetoriais como no caso em estudo.

5.2 VALIDACAO E SOLUCOES DO MODELO — FREQUENCIAS NATURAIS DO
SISTEMA

Para efeito de verificagdo das frequéncias natutaissistema bem como
validacdo do modelo matematico em espaco de estasenvolvido anteriormente,
vamos apresentar quatro formas de célculo daséneips e fazer uma comparacao dos

valores encontrados.

5.2.1- DETERMINACAO ANALITICA DAS FREQUENCIAS NATURAIS DO PENDULO
DUPLO
O Lagrangeano desenvolvido em 5.12 com uso deaaskntos angulared
e ¢2 (para facilitar a manipulacdo algébrica) mostsadbaixo e torques de entrada

nulos, pode ser apresentado da seguinte forma:

Figura 5-4 - Angulos para determinacéo das freqiiéias naturais
17 if 1 2 12 Y1 o ; i
§i= 5]@{ + E-m.gr’fq-ﬁ + 5[2;-')§ + madalid1d0

2 2 A, 121
—[3m1gdi6F 4+ maglid] + tmagdadd).

Que para pequenos angulos e L1=L2=L pode ser rgesomo:
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(molf + 1))y + madalidy = —(mygd; — magly)d,
madaligy + Ly = —magdads

Podemos notar que o sistema tem a forma andlogaia kx =0 e

conseguimos expressa-lo em fungéo de suas freggémaiurais por:

[ 1, + mol3 T, — madalF]w*
—[mygdi Iy + maygly I, + magds Iy + migdyl2]w?

—I—TTIIT?I-ngd]dQ + m%ggdgll =0.

Resolvendo o sistema via Matlab (rotina mostradap@ndice — Rotina em

Matlab para célculo das frequiéncias analiticasnps:
f1=0,6566 Hz

f2=1,4571 Hz

5.2.2— FREQUENCIAS NATURAIS ATRAVES DA TRANSFORMADA DE FOURIER

Vamos calcular dois gréaficos de deslocamentos anggiem funcdo do tempo
usando o modelo de espaco de estado e integragidtema em espaco de estado — ndo
linear - no tempo. A partir destes graficos vamaef a transformada de Fourier e

analisar no dominio da frequéncia.

A implementacdo computacional do processo de iat@gr numérica sera
realizada no programa Scilab, usando a funcéo QI2Eepliza a integracdo numerica a
partir de condic¢des iniciais fornecidas. O coma®= é um solucionador de equagdes
ordinarias e selecionamos o método de integracdoénca Runge-Kutta descrito

anteriormente.

Inicialmente os péndulos foram colocados alinhaglasclinados 5 graus em

relacéo a vertical com velocidade inicial nula.
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Figura 5-5 - Péndulos inclinados alinhados a 5° gzosi¢céo de equilibrio

Os graficos dos angulos tetal e teta2 no tempam&sentados a seguir:

Dscilagﬁo livre - Posigao angular da coxa

[ped] LEya L

Tempo t [s]

Figura 5-6 - Posi¢éo da coxa - integracéo do sistarem espaco de estado (n&o linear)
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Oscilagdo livre - Posigdo angular da canela
D12 — - - Al SN

Bldbecccas
0.08 -
D.06 T

0.04 —

0.02

TetaZ [rad]
o
|

-0.02 —

el = = d

-0.08 — -

BT e

T
R e L e L

-0.08 -

g dbcliccgeccacdoaad=ls

W -4 - - -
= b

o

-y

[

-0.12

-+ ---
@ =+ - = -

Tempo t [5]

Figura 5-7 - - Posi¢do da canela - integracdo distema em espaco de estado (ndo linear)

Os graficos acima podem ser analisados no dommifredjiéncia usando a

transformada rapida de Fourier.

A transformada de Fourier €, em esséncia, umaniemt matematica que

realiza a transi¢cado entre as variaveis tempo éiémcja de sinais [6].

A transformada rapida de Fourier ou FFT (Fast Foufiransform) faz a
conversdao do dominio do tempo para o da frequéuitizaando reduzido recurso

computacional.

Os graficos de FFT dos angulos do pendulo durantes@lacdo sao

apresentados a seguir:
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FFT - Posigéo angular da canela

Ta freq natural = 0.65918 Hz

2a freq natural = 1.46484 Hz

Amp (graus)
i

0.5

A

T T T T T T T T
-2 -0.8 04 16 25 4 5.2 G4 TE

Freg (Hz)

8:8 10

Figura 5-8 - FFT do deslocamento da canela

Nota-se que os picos de freqliéncia estdo bastastacddos, sdo em numero
de dois, indicando 2 modos de vibrar, e apresenalores de 0,65918 Hz para a
primeira freqiiéncia e 1,4684 Hz para a segundaérezja.

5.2.3 — FREQUENCIAS NATURAIS ATRAVES DAS MATRIZES DE ESTADO
LINEARIZADAS

E possivel escrever a linearizag&o utilizando aes§o por série de Taylor de
primeira ordem ao mesmo tempo em que se obtémaxe@gfe estados, utilizando o

jacobiano. Para utilizar esta ferramenta, devessgeeer o vetor de estados como sendo
a variacdo em relacéo a condicdo de operagdojaiu se

X1 91 - 9_1]
_ 2 92
X() = |

ks

%] (6
. _ XZ _ 92
X(t)_I[X3]I_ 6,

OndeHT, ?2,9_1 e 0, sdo os valores (constantes) da condicdo de opeeagdo
dados a sequir.
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6, = Velocidade angular da coxa na condi¢do de operafao

6, = Velocidade angular da canela na condicdo de operaf.
0, = Posicao angular da coxa na condi¢géo de opera8ag2-
6, = Posicéo angular da canela na condi¢ao de operatao

Assim, a matriz A, para linearizar as equacdesida gelo Jacobiano d&t)

em relacdo ao vetdf(t), no ponto de operacdo. Logo:

_aél aél aél aél_
aql ag:z aql 6?2 06, 96, 06, 86,
00, 00, 00, 00:| |36, 96, 06, 06,
4= |06 96, 6(?1 6?2 _106, 06, 06, a4,
00, 06, 00, 061} |54, ad, 06, 06,
26, 06, 06, 06, 1 0 0 0
a0, a6, a9, a6,] L0 1 0 0
06, 06, 06, 006,]

Novamente, o program&lathematicacalculou as derivadas no ponto de
operacdo. Os valores finais dos elementos da maAtrsio dados a seguir. O seu

desenvolvimento esta na rotina em anexo.

—0.692614 1.03658 —29.0599 16.4172

A= 1.72763 —3.7836  40.8148 —72.6212
1 0 0 0
0 1 0 0

Seguindo a mesma linha de raciocinio, a matriz dada pelo Jacobiano de

X(t) em relagéo ao veter(t), também no ponto de operacdo. Assim:

(00, 00,]
0Ty 0Tz| 194, 86,]
90, 06, |51, a1,
JaT; 09T, 06, b,
96, 06,) 57, BT,
aT, | |o o
6, 96, L0 0 -
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Com o auxilio do programdathematicaobteve-se a matriz B.

1.38523  —3.45525
—3.45525 12.612
0 0
0 0

B =

Como se deseja analisar as respostas das posi¢@scelades angulares, a
matriz C € a matriz diagonal unitaria. Como neitema ndo ha alimentagéo direta, a

matriz D é nula. Logo:

eD =

coor
cor o
or oo
_ o oo
cooo
cocooo

Vale lembrar que neste método de resolugdo daritragdo e de espaco de
estados, os vetores de estado, de resposta erddaesfio representados pela variacao

em relacédo a condicédo de operacédo. Ou seja:

-8 [6-G )
T1—T1]

x@) =% "8 y) =192~ 92| eu(r) = 1
0, —06 0, — 0 I,-T,

1 _1 l 1 _1J
6, — 6, 6, — 6,
Onde:

T, = Torque do motor 1 (que age sobre a coxa) na candie operacdo = 0
Nm.

T, = Torque do motor 2 (que age sobre a canela) nagmde operacdo = 0
Nm.

Com todas as matrizes definidas, tem-se o espaestddos com as equacdes

linearizadas. Tem-se:
X(t) = A*X() + B *u(t)
Y(t) =C+X(t) + D = u(t)

O sistema foi linearizado em torno da posicao e@ltisendo representado a

seguir pelas matrizes de estado A, B e C.
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0, —0.692614 1.03658 —29.0599  16.4172 01
0, | 1.72763 —3.7836  40.8148 —72.6212| |6,
6, 1 0 0 0 0,
6, 0 1 0 0 0,
1.38523  —3.45525
4| 345525 12612 *[Tl]
0 0 T,
0 0
01 1 0 0 0] [6:
6,]_10 1 0 0‘*[9‘2]
6, 0 0 1 of |o
0, 0 0 0 1 0,

A andlise é feita por meio dos pélos do sistemaeg&gpodlos sdo seus
autovalores, ou seja, eles sdo as raizes do deadonirda matriz de funcdes de
transferéncias. Quando se utiliza o comapale(sys)o programavatlab, ele fornece

0s pélos do sistema. Os pélos sao:
—0.0992 + 4.1237i
—0.0992 — 4.1237i
—2.1386 + 8.9477i
—2.1386 — 8.9477i

A freqUéncia natural do sistema pode ser calcudadaés do modulo do valor

complexo dos autovalores. Temos entdo duas fre@#naturais apresentadas abaixo.
w1=4,1249 rad/s
w2 = 9,1997 rad/s
f1 = 0,6565 Hz

f2 =1,4642 Hz

5.2.4 — ANALISE DAS FREQUENCIAS ATRAVES DO SISTEMA LINEARIZADO
USANDO SOLVER M OTION SOLVE

Em geral, os solver de multicorpos apresentam pm de solugdo chamada

linear que realiza o célculo das matrizes de esafEto dos autovalores, autovetores do
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sistema, frequiiéncias naturais e modos de vibraesEgados séo apresentados na tabela

a seguir:
Tabela 5-2 - Frequéncias naturais obtidas pelo MotitSolve na solugéo do tipo linear
hm-EER NATURAL FREQ(HZ) DAMPING RATIC REAL (HZ) IMAG FREQ (HZ)
1 6.564054E-01 3.841140E-17 -2.586985E-17 6.564054E-01
1 6.564054E-01 3.941140E-17 -2.586985E-17 -6.564054E-01
2 1.464380E+00 1.794208E-17 -2.627402E-17 1.464380E+00
2 1.464380E+00 1.794208E-17 -2.627402E-17 -1.464380E+00

5.2.5QUADRO GERAL COMPARATIVO ENTRE FREQUENCIAS NATURAIS

A seguir temos um quadro comparativo das frequémasurais calculadas

Tabela 5-3- Quadro comparativo das frequiéncias natais obtidas

12 Freqiiéncia

Erro relativo f1

22 Freqiiéncia

Erro relativo f2

Método (Hz) (%) (Hz) (%)
1 -Analitico 0,6566 - 1,4571 -
2-FFT 0,6592 0,3929 1,4648 0,5312
3 -Espago de estado-
Sistema linearizado 0,6565 -0,0152 1,4642 0,4873
4 - Sistema linear —
Solver multicorpos 0,6564 -0,0305 1,4644 0,4996

Podemos notar que nos quatro métodos os valoreBed&éncia natural

ficaram bastante préximos com erros menos que Xfweoindica que para pequenos

angulos, o modelamento esta coerente.

5.3 VALIDACAO E SOLUCOES DO MODELO — GRANDES DESLOCAMENTOS

Além da comparacao das frequéncias naturais densstpodemos também

comparar o historico das posicoes e velocidadeslam®g ao submeter o sistema a uma

condicdo que fuja da linearidade usando tanto @ac&ol desenvolvida nesse trabalho

com o sistema na forma de espago de estado e gaasttucdo com o solver de

multicorpos MotionSolve.

Foi projetado um o modelo fisico de dois corposcalddas por juntas de

revolucdo nas extremidades com parametros de massgasias, gravidade, torque

motor e dissipativo iguais aos do modelo matemaficimulacéo € ilustrada a seguir.
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I Orto_session.mvw - HyperWorks v12.0. JE=
File Edit Yiew SolverMode Model Analysis Tools FlexTools Macros Applications Help i i o .
fark-B-%-% | B e9HEHO-EEA: R LHEGALAGRE- ol RAE&L U=+ 0
PEESE e

Session ] Project |

Expressions

nd!

REQ/70000000 Quadil
REQ/70000001 Joetho

% 0ok

szngl (s) *
Bio®7/ L+ F+ 0 B LFO® OSSN
P E2 R () B
[b_cox R
I Defomabie Dista Summry..
Inertia properti
lee [ [P | 0.0000
e [ [ECRE| 0.0000
M TE00 Iz | 01339 bz | 0.0000
< D ] e
Ready

Figura 5-9 - Modelo do péndulo duplo em ambiente M@nView

Vamos aqui usar os péndulos dispostos a 90 graus.

L

Figura 5-10 - Posi¢éo inicial - grandes deslocamerg

Abaixo temos os gréficos da posicdo angular da dorgpo superior do
péndulo), posicdo angular da canela (corpo infeggnosicfes angulares da canela de
coxa. O primeiro grafico é referente a solucao mgaéoor integracdo do sistema em

espaco de estado com o Scilab (rotina no apénditiegracdo numérica nao linear) e a
segunda é a solucao com o solver MotionSolve.
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Figura 5-11 - Angulo da coxa - grandes deslocamesste integracdo do modelo néo linear em espaco déae®

Figura 5-12 - Angulo da canela - grandes deslocantes — integracdo do modelo n&o linear em espaco de
estado
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Figura 5-13 - Angulos da coxa e canela sobrepostograndes deslocamentos — solucgéo do solver Mot&wive

Podemos sobrepor os graficos, comparando a sotigéddotionSolve com a

integracéo do sistema em espaco de estado, confoasteado abaixo.

Quadril

Joelho

m

Aﬂil.l\ﬂ (rad)

MotionSolve
Seilab

MotionSokve
Seilab

25
Time

Erro {MotionSolve-Scilab) Quadril

45

15 2 25

Time

Erro {(MotionSolve-Scilab) Joelho

3 35

1
~ -5 \_“
gos /'\_,_\ / \\ g s
3 74 . \ E0 \
E . S / . - E \\7\
S S N o~ 7=
2 \ [N | s X
T 05 \_ s =4
20 b
E \ <
N
1.5 8
: : T y : : -30 : : T y T y ; T
05 1 15 2 25 3 15 4 45 05 1 15 2 25 3 35 4 45
X Axis A Axis

Figura 5-14 - Comparacéo da solugdo por integracaao sistema em espaco de estado e do MotionSolve —

grandes deslocamentos

Até aproximadamente 3,5s os dois métodos apresergapostas bastante

proximas.

Como o sistema um comportamento que podemos @asidomo cadtico a

resposta € bastante sensivel a integracdo nuneplcmda o que pode causar um
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distanciamento dos graficos a partir de certo panteles passam a ndo mais se

aproximar.

A imagem a seguir ilustra 0 movimento de um portigado na extremidade
do péndulo.

Figura 5-15 — Tragado da ponta do péndulo até 5s -idfa 3D

\ |
L.

Figura 5-16 — Tragado da ponta do péndulo até 1.5sVista 2D

Nota-se uma boa aproximacgéao dos dois resultadosspetracado.
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5.4 FREQUENCIAS NATURAIS DE COMPONENTES

Os componentes (ou corpos ou partes) do péndwdmfaté aqui, modeladas
como rigidas. Esta € uma primeira abordagem quajnda a entender caracteristicas
do sistema como a frequéncia natural do sisiemeolucdo quando submetido a

grandes deslocamentos.

O modelamento por corpo rigido €, na verdade, wealizacdo uma vez que

0S corpos tém rigidez caracteristica da estrutura.

Esta rigidez influencia em maior ou menor grau inamica do sistema e € por
esta razdo que sera feito um estudo da flexibdidaem como a determinacdo das

freqUiéncias naturais de uma parte especifica, smaaoxa.

Para efeitos de simplificacdo do problema, uma gqee o trabalho busca
entender como 0 modelamento numeérico dos sistemasudtiplos corpos (péndulo
duplo, em especifico), serda considerada apenasgidezi no sentido axial, se
comportando o corpo como um elemento de trelica R@QD). Estamos, portanto,
desconsiderando o efeito de flexdo. Também sersidamado o regime de linearidade
de material (deslocamento proporcional ao carregtonfe=k.x).

Andlises mais refinadas como a consideracdo daifielade, ndo linearidade
geométrica e de material sdo possiveis, porém faderascopo deste trabalho. Vale
salientar que a andlise da forma como sera feitke gervir de base para estudos

posteriores.

5.4.1 FREQUENCIAS NATURAIS — FORMA ANALITICA

A titulo de comparacéo e validacdo do modelo,exgincias naturais

longitudinais de uma viga na condicéo livre-liveegum corpo continuo sado dadas por:

w =nr 'II E
il ‘ \II pLz

\'l kg ! m’ * m*

'l N me ]

Comn=0, 1, 2, 3...

Consideremos os valores aproximados para a pr@poieedio 0Sso:
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E=7GPa
Rho = 8000 Kg/m"3
L =0,4629 m

Portanto, de forma analitica temos, lembrando que2#r*f:

fl1=0Hz
f2 =1010,4 Hz
f3 =2020,8 Hz

5.2.2 FREQUENCIAS NATURAIS — FORMA DISCRETIZADA EM ELEMENTOS
FINITOS

As equacOes para analise de sistemas continu@legaadas para aplicacdes
em que as secOes transversais tém propriedadesinagdamente constantes. No
entanto, se as propriedades geométricas e de aimtariudarem ao longo do
componente (por exemplo em partes complexas coma perna) entdo uma
modelagem mais apropriada para representar de foidwal computacionalmente a

solucéo é necessaria para descrever essas desmades.

A modelagem em elementos finitos é uma forma decrdesr estas

descontinuidades de propriedades.

Este modelo representa sistemas continuos de ftisnig@tizada em elementos
menores.

Abaixo estdo alguns exemplos de 6rgaos de estsuttomplexas do corpo
humano representados em elementos finitos.



35

mandible

Figura 5-17 - Exemplos de estruturas 6sseas em elementos fsit

Vamos representar uma das partes do pendulo conzo wiga corr

elemento de trelica (carregamento somente axiljida em 2 elementc

Consideremosque a viga pode sce apenas vibragbes longitudinais.
desejarmosnodelar a viga com elementos discreijpodemosescolhr os valores de

massa e rigidez dispostos na forma mati para cada elementonforme abaix

@) f Eepehle 5 ®) g - ty
6 S {f} [Ke]{u;}
T e { ,; }=[Me]{ u;}

Temos entdgue a matriz de rigidez do elemento € dade

-> jl - K. —K. ur |,
J2 | —Ke K. 12

Onde

E a matriz de massa é dada

— {fl } _ [Mll MIZ}{&I}
2 My My | | i
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Com

Pele
6

). L
My =Mx»n = Icscaﬂd M, =My =

Sendope a densidade linear da viga.

Para um corpo de comprimento L, se¢éo transversaiddlulo de elasticidade
E e densidade volumétrig podemos calcular rigidez e massa concentrada como

mostrado anteriormente para cada elemento.

Vamos agora usar 2 elementos para representaaa vig

< >
|
. L2 e L2
@ ] ®
Node 1 Node 2 Node 3

Matriz de rigidez para cada elemento:

-

1/3 1/6]

[x.]-

AE
L/2

[v.)- pAL/2[1/6 1/3

Devemos combinar as matrizes de rigidez e massaenatal em matrizes que

representem o corpo globalmente impondo vinculeesda um dos nés do modelo:

L2 > L2

@ ® @ ®
Node 1.1 Node 2.1 Node 1.2 Node 2.2
9
Jpnode#2,elemem#l = _.fnoa’e#l,element#Z
%
unode#Z,element#l = unode#l,elemenf#2

As matrizes de rigidez e massa dos dois elemeétomdicadas abaixo:
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N1 N2 N1 N2

CAS A ] e

N2 1 N2

S R At [KH

E os vinculos entre elementos sdo dados por:
Jor==1f,and u,, =u,,

Para assegurar as restricdes de devemos somarhas korrespondentes a

cada no para eliminar a forga interna do no.

]Jj AE 11 1_+11 01- .
=—]|- =1|[{u
(L2 2
£ 0| -1 1|]u

)= & Ju} =

E a matrizes de massa e inércia resultantes s@&s gad

I -1 0

AE
[K]_m -1 2 -1
0 -1 1

1/3 1/6 0

—_

[M]=pari2|1ir6 2/3 1/6
0 1/6 1/3

Podemos agora equacionar 0 movimento do sistema por

6

13 1/6 0 1(i 1=l 07w [/
pdLs2|176 213 1/6|)ii, +% 212 —fluloly

o 16 1/3|]i o -1 1||u] |f

Para determinacdo das freqiéncias naturais da p@ssamos a ter um

problema de autovalores e autovetores.
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O sistema fica entéo representado por:

0.6130 —0.6130 0 ul 1.2510 0.6255 0 ul
—0.6130 1.2260 —0.6130 || u2 |+ 0.6255 2.5019 0.6255 || u2

0 —0.6130 0.6130 / \y3 0 0.6255 1.2510/ \u3

F1
=\|F2
F3

Os valores de frequéncia calculados usando 2 eteshtaram calculadas e sao

mostrados abaixo:

fl=0Hz
f2=1114,1 Hz
f3 =2228,2 Hz

Para validar o modelo desenvolvido acima foi ummmesnodelo usando um

software comercial de elementos finitos.

Model Info: C/Hurmberto/TRIMOSRod_freq_vheam.hm

Z

KKL’X

Figura 5-18 - Modelamento da coxa em elementos fins
Os resultados séo apresentados abaixo:

Tabela 5-4 - Frequéncias naturais calculadas com olger de elementos finitos OptiStruct

Mode Fregquency

3.987660E-04
1.172043E+03
2.342434E+03

Lh RS

A tabela abaixo sintetiza as frequéncias encondrgolra os diferentes

métodos:
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Tabela 5-5 - Comparacao das frequéncias naturais dmmponente

12 Freq | Errorelativofl | 22 Freq | Erro relativo f2 32 Freq Erro relativo f3

Método (Hz) (%) (Hz) (%) (Hz) (%)
Analitico 0,0 - 1010,4 - 2020,8 -
Modelo 2 elementos 0,0 0,0 11142 10,3 2228,2 10,3

Modelo Elementos finitos —

Solver OptiStruct 0,0 0,0 1172,0 16,0 2342,4 15,9

Pode-se notar que a solucdo desenvolvida no t@ligibu mais proxima da
analitica do que a solucéo do software OptiStrucego foi da ordem de 10%.

Vale destacar que o modelo desenvolvido para 2egis pode ser facilmente
extrapolado para mais elementos e a precisdo selé maior. As duas solucdes serdo

idealmente iguais para um namero infinito de elege(equivale ao meio continuo).

Para saber o nimero de elementos requeridos gatagio é preciso fazer um

estudo de convergéncia, variando o numero de elesieravaliando o erro.

6 MODELAMENTO E SOLUCAO EM AMBIENTE MOTIONSOLVE

CONSIDERANDO A FLEXIBILIDADE DE UM COMPONENTE

Fizemos até aqui duas abordagens para estudo dolpetuplo. A primeira

esteve focada na dindmica do sistema e a seguamd&amica do componente.

Podemos relacionar as duas soluc¢des consideradisd@raica do componente
e do sistema simultaneamente. Isto é feito coremidier o mecanismo com partes

flexiveis.

No modelo do sistema existem poucos graus de hderdgeralmente um
namero menor que 100 e o modelo do componente emeatos finitos normalmente

chega a ter milhdes de graus de liberdade.

Portanto, as solu¢cdes matematicas empregadas tars@éndistintas. Por
exemplo, Runge Kutta para sistema e inversdo dezeste autovalores em elementos

finitos.

Existem métodos que integram essas duas abordagransiétodo comumente
usado é a sintese de Craig-Bampton que reduz oraloeegraus de liberdade de um



40

componente discretizado em elementos a valoreatignte da ordem de 10 a 100. Isto

permite fazer juncéo do modelo em elementos fimtamodelo do sistema.

Foge do escopo deste trabalho detalhar numericantembétodo de Craig-
Bampton uma vez que se trata de algoritmos trabathae inversdo de matrizes,

ortogonalizacédo e também transformacao das vasiéleesistema.

De uma forma geral, podemos pensar no método dig-Bampton como
semelhante a transformada de Fourier em que a$dsrngodem ser reescritas como

combinacéo de uma base de funcbes na forma de senos

Na sintese de Craig Bampton, a base sdo as cosadigiermadas (ou os
autovetores) ou modos de vibrar do componente kgugraoutra condicdo deformada
pode ser uma combinacdo desta base.

Portanto na solugéo do sistema, devemos encorgtriatares que multiplicam

esta base.

Um detalhamento do método esta presente no apéndifexibilidade

estrutural em analises dindmicas — método de Gaigpton.

O uso desta solucéo pode ser ilustrado abaixo fmma®nstruido um modelo

com uso de um componente flexivel.

A coxa foi modelada em elementos finitos com 2 eletws 1D de viga, tendo
as mesmas caracteristicas de material considenadedlculo das freqtiéncias naturais
da coxa, sendo:

E=7GPa

Rho = 8000 Kg/m"3

L = 0,4629 m
D=2"

O componente foi modelada no programa de eleméinttss HyperMesh em

elementos de trelica (ROD).
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A sintese modal foi feita no solver OptiStructlizéindo o método de Craig-

Bampton.

Vamos comecar validando o modelo na posi¢ao verénaequilibrio,

conforme mostrado na figura abaixo:

L Unititied - HyperWorks v12.0 o) i3
File Edit View SolverMode Model Analysis Tools FleTools Macros Applications Help
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Figura 6-1 - Modelo péndulo duplo com corpo flexivie- posigao vertical

O corpo flexivel foi modelado com 2 elementos eassa fica distribuida entre
0s nés conforme mostrado a seguir.
m=1875kg @ NO !
K=A.E/L

B Feteitenil m=1,875kg ml(total)=7,50kg
SIE @ 62

|:> m=1,875kg
K=AEL

Parte rigida m=1.875kg NG 3

L

m2=3,49 kg

Figura 6-2 — Esquema do modelo flexivel com 2 elermen
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_AE _ m(2.254.107%)%.7.10°
L 0,4929/2

K =5,76.10"N/m

A forca na primeira mola sera F1 = 91,15N e a foilggegunda mola sera
F2=53,65N

O deslocamento no n6 intermediario, N2, sera:
F1
AN2 =—=1,58.10"°m
K
O deslocamento do n6 extremo N3 sera:
F2
AN3 = AN2 + 7 =251.10"°m

A solucédo encontrada pelo solver MotionSolve foi:

Contour Flot
DisplacementiMad)
Analysis system

2.384E-06
[ 2.119E-06
1.8594E-06

— 1.589E-06
T 1.325E-06
T 1.060E-06

T.947E-07
ES.EQSE—D?
7 R40E-07 Walue = 2.532E-006
0.000E+00
Wax = 2. 384E-06
Flexhody/30102 3

Win = 0.000E+00
Flexhody/30102 1
Y

E = 1.45E-006

=X

Figura 6-3 - Deslocamentos da parte flexivel - pagio vertical
Comparando os dois resultados, temos:

Tabela 6 - Comparagéo entre deslocamentos calculaddviotionSolve

Deslocamento Deslocamento MotionSolve
No6 calculado (x10e-6 m) (x10e-6 m) Erro (%)
2 1,58 1,48 6,3
3 2,51 2,32 7,6

Vamos agora analisar os deslocamentos em uma éondiigamica. Primeiro
com o péndulo oscilando com pequenos deslocamergnsoutra analise com grandes
deslocamentos.

Abaixo temos o péndulo flexivel com posicao inieid graus com a vertical.
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Figura 6-4 - Péndulo flexivel a 5°

A seguirtemos a resposta do sistema para a condicéo idesfalgraus
oscilacéo livre.

Deslocamento angular da coxa

5.00E+000
4.00E+000
3.00E+000
" 2 D0E+000
z
£, 1.00E+000+

A AN N

"2 0.00E+000
21 00E+0004
& -2.00E+0004
-3 O0E-+000
-4 O0E+000

-5.00E+000

AVARVERVERVALAR VAR

Tempo ()
Deformacéo da coxa

2.78E-00

2.77E-006

2.7SE-006

2.73E-006

2.72E-006

Deformacao maxima 2 76747e-006 =m |

Deformacan minima = 2.72949e-008 m

2.71E-00

1 2 3 S
Ternpa (s)

Figura 6-5 - Respostas do péndulo flexivel em oscilagao livreo$tcao iricial 5¢

Podenos notar que as maiores deformacgBes ocorrem ndsspda elevade
aceleragfes centripetas, ou seja, quando a ca@groxima da vertica

Os valores de defmacéo oscilam entre 2,7:-6 m e 2,767& m.

Vamos agora simular o péndulo em uma condicéo ldageearidade com ¢
péndulos a 90 graus na condicéo inicial e osciléigé® conforme ilustracao abai:
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Figura 6-6 - Péndulo flexivel ortogonal — condigéo inicial

As repostas encontrac para o deslocamento angular da coxa e

deformacéao foram:

-6 .00E+001

-1.00E+002-
-1 20E+002
§ -1 .40E+002
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Figura 6-7 - Respostas péndulo flexivel ortogonal
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Defarmacan mrm Tirne = 0.270000
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Figura 6-8 - Deformagdes no instante do pico 1 (t527s)
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Figura 6-9 - Deformagdes no instante do pico 2 (t589s)
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Figura 6-10 - Deformacdes no instante do pico 3 (1509s)
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Os resultados das deformacbes se mostraram cotefizeom 0 que era
esperado com os picos de deformacao acontecendostastes de mudanca brusca da
trajetoria.

A deformacdo maxima ficou em 1,75e-5 m, ou sejéb i o que demonstra
gue para este cenario a flexibilidade é muito baixam pouca influéncia na dinamica
do sistema.

7 CONCLUSOES

O problema de mecanismo de péndulo duplo abordaste rntrabalho se
mostrou adequado para compreender a forma com gassével analisar problemas de

dindmica multicorpos.

Primeiramente foi apresentado um problema real da perna com duas
articulacbes que pode ser representada por um mddgdéndulo duplo. A dindmica do
péndulo foi entdo descrita na forma de espaco tmdesPara validar o modelo
matematico foi feito um estudo das freqUénciasra@ido sistema comparando com
valores analiticos e também com modelos desenwad\adh ferramenta especifica para
dindmica de mudltiplos corpos (solver MotionSolveps valores encontrados ficaram

muito proximos, com erro menor que 1%.

Outra comparacao foi feita com o péndulo em uméac@osortogonal sobre a
acdo da gravidade, posicao em que a dinamica eseapa altamente nao linear. O
resultado de deslocamentos angulares por integragéérica do modelo em espaco de
estado com método Kunge Kutta foi comparado a &oldp MotionSolve e os valores
ficaram muito proximos até 3,5s. Apos esse temposaducdes passaram a divergir.
Como o resultado tem, em certa medida, de pedtiaa qualquer pequena variagdo na
solugcdo numérica pode alterar o comportamentosiersa e entdo as solu¢cdes podem
divergir bastante a partir daquele ponto. Valealkssque o modelo e integracdo deste
trabalho foram feitos de forma a ter um controle tddos os passos (modelo e
integracdo) o que ndo acontece com a solucdo dom&ilve que, grosso modo, pode

ser visto como uma “caixa preta”.
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Foi realizado também um estudo com foco no enteziionna dinamica do
componente, de sua rigidez longitudinal, distriboigle massa e frequéncias naturais
através da discretizagdo em duas partes (ou eles)efis valores encontrados foram
entdo comparados a uma solucdo comercial de elesinitos (OptiStruct) e também

a solucéo analitica que ficaram com erro da ordeBPA.

Integrando as duas abordagens, dinamica do sig&tnaomponente, foi feito
com estudo do péndulo com um componente em coepdvél, por sintese de Craig
Brampton usando as solugbes OptiStruct e Motior&SolMeste caso néo foi
desenvolvido o detalhamento matematico da solusaleformacdes do componente
flexivel ficaram muito baixas, e podemos, portacwocluir que para o cenario deste
trabalho, a dindmica do componente n&o altera andea do sistema por envolver

baixos carregamentos e frequéncias distintas.

Trabalhos futuros podem ser desenvolvidos no sentitk detalhar
numericamente a solu¢cdo com corpo flexivel. Tamipérera servir de base para

trabalhos mais completos sobre a locomocao humana.
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9 APENDICES

9.1 FLEXIBILIDADE ESTRUTURAL EM ANALISES DINAMICAS —METODO DE

CRAIG BAMPTON

9.1.1.1 Superposicao Modal

A chave para a determinacdo da resposta dinamicandgstema discretizado
em elementos finitos, através da sua flexibilidddemodos, baseia-se no método da
superposi¢cdo modal. E assumido que, para uma \@sirstijeita a um carregamento
dindmico, a sua configuracdo deformada em um datarite de tempo pode ser obtida
somando-se as configuracdes de diferentes modoeb@de. Como demonstra a Figura
9-1, essa soma de configuracbes é uma combinagéar Idos modos naturais de
vibracdo da estrutura. Nessa soma de efeitos,mada de vibragdo é multiplicado por
um fator que representa a sua importancia ao caldalresposta dindmica naquele

instante de tempo. Tal fator € conhecido como f@oescala ou amplitude modal.

12 modo
& fth S
= — AL 1 T i A = =
- L
S e
22modo _ e, ]
= Estrutura sob carregamento dindmico
—
Q 92
‘::- Resposta (ostrutura deformadanoinstante = 772|
3* modo
,/ ¢ Superposico modal
= Ty I (Mados * o)
42 modo 5 @
e e
:::* oy \3\
o 5 Estrutura deformada no instante 2. Esta
W moda Un configuragdo ¢ obtida a partir ¢a
combinagao lincar dos modos.

Figura 9-1 - Superposi¢cao modal

X(1) =X 00,0 .
i=1

Onden é o numero de modos de vibrarge sdo as coordenadas modais,

também chamadas de fatores de escala ou amplitumhss.

Portanto, a superposi¢cdo modal, definida pela Equé®-1), que representa a
resposta transiente da estrutura, depende da éxedecduas etapas. A primeira é o
calculo dos modos ¢{) e frequéncias naturais de vibracdo da estrutera,

procedimento conhecido por andlise modal. A segéndadeterminacdo do fator de
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participacdo (amplitude) de cada um desses maylpsg resposta dinamica do instante
L.

9.1.1.2 Anélise Modal
A resposta dinamica linear do sistema, para cada de liberdade, é regida
pelo calculo da equacéo de equilibfid]{x} + [C]{x} + [K]{x} = ). Fext

Todavia, para sistemas discretizados em elementatosf com uma
guantidade muito grande de GDL (graus de liberdad&rgura de banda das matrizes
[M], [C] e [K] torna bastante oneroso o0 processo computacianaotucdo dessas

equacOes de equilibrio.

A alternativa para esse problema é uma mudancastade deslocamentos do
modelo de elementos finitos para uma base reddEdieslocamentos generalizados. O
objetivo dessa troca é a obteng&o de novas madﬁzermssa{M], amorteciment¢C] e
rigidez [K] para o sistema, as quais tém largura de bandarnyeloas matrizes do
sistema original. Para realizar essa mudanca d& basa matriz de transformacéo é
necessaria. As colunas dessa matriz de transfoonj@;&80 os autovetores, que sao o

resultado da analise modal.

Matematicamente, o procedimento de andlise moddiste, resumidamente,

em:
-Montagem do sistemi@ — A[M];
-Calculo dos autovalores do sistemig{
-Determinacéo das frequiéncias naturais= Vi
-Calculo dos autovetoregi}.

De posse da matrig], realiza-se a transformacéo das coordenadasuie &g
de equilibrio, para se obter as equacfes dinanticasdeslocamentos generalizados

modais. Essa transformacao € dada pela Equacao 9.2.

x(®} = [el{x(t)} (9-2)
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As novas equac¢Oes dinamicas, agora na base deaesiotos generalizados,

sdo resumidas na 9.3.

(9.3)

Fo+lel [Cllol{zm}+of {0} =[o]' X F

onde [¢]=[¢1.0...,]. [ = el IEllwl=lel e [0l [a][o) =111,

A matriz [p] tem em suas colunas os autovet@sgsy, , @3, ... ¢, que Sao 0s
modos de vibracdo do sistema. A matriz diagoa} fem como elementos n&o nulos
w1?%, wy%, w3?, ..., w,%, que sdo os quadrados das frequéncias naturaisstiona,

determinadas a partir dos autovalores.

Do ponto de vista fisico, a anélise modal refleteomportamento dindmico
basico da estrutura e indica como respondera aanmgamento transiente agindo sobre
ela. Também é importante ressaltar que, quandalZada a analise modal de uma
estrutura livre (sem vinculagbes), os primeiros osodle vibrar ndo acarretam
deformac&o na mesma. S&o os modos de autovaloegiiéhcia natural nula, nos quais
ndo ha transformacdo de energia cinética em paleptistica (deformacdo). Tais

modos sao chamados de modos de corpo rigido.

9.1.1.3 Amplitude Modal (Fator de Escala)

Para determinar o peso de cada modo de vibrac&espasta dinamica do
sistema, substitui-se a equacgédo de superposicaal flbguacéo 9.1) na equacéo de
equilibrio dindmico. Essa substituicdo é demonatpeda Equacéo 9.4.

[ﬁ"f]ql{(pl}""[i‘"ﬂ@z{@2}"'"""[*'1{]@” {@:.}"'[C]m{@1}+[(_.]‘1-72{¢72}+"'

A[Clafo+ Klafol+[Klalo}s - +[Kla o} ={Fo}

Através da propriedade de ortogonalidade, é pdssiiwglificar essa equacao,

como indica a Equacéo 9.5.

o} IM]ifot+{e) [Cli{ol+{a} [Kla{o}={o} {F®} o



52

Aplicando-se novamente o conceito da mudanca de s para uma base
generalizada, ou desacoplada, originam-se matleesassa, amortecimento, rigidez e
forca generalizadas para um dado modo de vibparA definicho das matrizes

desacopladas é dada na Equacéo 3.6.

[21] :{q».}f[ﬂf]{m}
(€] ={e} [clie}
(K] ={ w} [K]{co}
{ﬁ(r)}I:Lgp!. VIF@)

(9.6)

Assim, a Equacao 9.5 tem sua versao desacopladgdlEquacao 9.7.

Mg [r)+[f‘l a.(0)+[ K] a,()={F0)]
9.7)

O fator de participacdo de cada modio portanto, é determinado resolvendo-
se uma equacao escalar para cada modo de vilifquacao 9.7). Isto é, basta resolver
um sistema de um GDL em coordenadas generaliz&dadeia principal aqui é a
mudanca da base fisica da estrutura para uma baaeaplada, onde as solugcbes das

equagdes sao mais facilmente encontradas.

Finalmente, com a determinagdo dos modos naturas vibracdo
(91, 92,93, ... o) € de seus respectivos fatores de participagdpd@,..., gn), €
encontrada a resposta dindmica da estrutura pdeaigstante de tempp a partir da
superposicdo modaEssa resposta transiente € dada pela Equacdodu8| @ analoga

a equacao inicial.

{-Y(."]}:Z@'Cfs(r) :%{@}"'G’: {¢3}+Q3{@3}+"""+qn {@n} ©08)
i-1 .

Onde {(t)} € a resposta da estrutura no instantgi a qn sdo os fatores de
participacdo de cada modo; ¢:1f a {¢,} sdo os modos de vibracdo, calculados na

analise modal.
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9.1.1.4 Flexibilidade Modal em Sistemas Multicorpos

O método de elementos finitos discretiza uma estuteal, com infinitos
graus de liberdade, em um modelo composto por amdgr nimero de elementos, nos
e GDL. Os deslocamentos lineares de cada um dasses, sdo descritos de forma
aproximada por combinacdo linear (superposicao)mibelos de vibrar como ja

demonstrado pelas Equagdes 9.1 e 9.8.

Conforme a premissa basica da superposicdo modabdssivel descrever o
comportamento de inUmeros GDL nodais com um peqnénero de GDL modais, 0s

quais mais influenciam o comportamento do sisteafaia de freqiiéncia de interesse.

Para que as maximas deformacdes relevantes aamaiswssam ser
representadas com o menor nimero de coordenadassnécempregada uma técnica
de sintese modal de componentes. Trata-se do mé¢oGaaig-Bampton, que permite a
definicAo de subconjuntos de GDL (da analise modah ndo estardo sujeitos a
superposi¢cao modal. Sdo os chamados GDL de contotnanterface, os quais sé&o

preservados na base modal de C-B.

Portanto, o método divide os GDL do sistema em daigpos: os GDL de

contorno,

{xb}, e os GDL de interior, Xi}. Definem-se, assim, dois conjuntos de modos
de vibrar: os modos vinculares e os modos normaisade fixa. Os modos vinculares
sdo formas estéticas obtidas pela aplicacdo deadesénto unitério (translacional ou
rotacional) em cada GDL de contorno, enquanto tedodemais GDL de contorno sé&o
mantidos fixos. O resultado € que as coordenadakisialos modos vinculares sao

iguais aos deslocamentos dos GDL de contorqd & { xb}).

Os modos normais de base fixa sdo obtidos ao $engas os GDL de
contorno e calcular uma solucdo de autovalorest@vetores. Sdo esses modos que
definem a expansdo modal dos GDL de interior, & tgua qualidade proporcional ao

namero de modos retidos pelo usuario.

A Equacao 9.9lescreve a relacdo entre os GDL fisicog)(g os modos de

Craig-Bampton com as suas coordenadas modais.
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Onde:

{xb} - GDL de contorno

{xi} - GDL de interior

{qc}- Coordenadas modais dos modos vinculares

{gn} - Coordenadas modais dos modos normais de bese fi

[1] - Matriz identidade

[0] - Matriz zero

[®ic] - Deslocamentos fisicos dos GDL de interior naslos vinculares

[®in] - Deslocamentos fisicos dos GDL de interior n@glos normais

As matrizes generalizadas de massa e rigidez, spamelentes a base modal de
Craig-Bampton, sé@o obtidas via transformacdo mdeaia a rigidez, tal transformacéao
e ilustrada pela Equacéo 9.10.

[&]..,=lol (Klo]-

(o] T._ (K] [K,]
] NN

o] [@,]] K] (&)
%]

(&
Fles™ ffcm,]]

1 [o }

[@.] [®,]

'9.10)

Para a massa, a transformacéo modal é dada pedgdend.11.

{ 1 ol }
] [®,]

(9.11)

[ﬂ:[]c_s =[o] [M][0] = [[ (7] [o] |:[‘Mrbb] [42,,]

(Dic] [(I)in] [*"]I"Iib] [‘M{n‘]

" :[\1} [-\1’”61]
- [, [, ]
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Onde os indices e b denotam os GDL de interior e de contorno,
respectivamenteg e n os modos vinculares e normais, respectivamen{&]e_p e

[M]._p s@o as matrizes generalizadas de massa e rigideBdeespectivamente.

Como [K]._p e [M]._p ndo sdo matrizes diagonais, os modos ‘puros’ de
Craig-Bampton nédo séo ortogonais. Para transfoanfiasse modal de C-B em uma base
equivalente e ortogonal de coordenadas modgi$, § necessaria uma matriz de
transformacao,N]. Essa matriz € o arranjo dos autovalores redekaso autoproblema
da Equacao 9.12.

(K] tab=A[M] {g}

(9.12)

C-B

A matriz de transformacéo € aplicada a base mddahcordo com a Equacédo
9.13.

O efeito na formula da superposicdo modal (EquacHoe, entédo, apresentado

na Equacao 9.14.

X = Z Pd; = Z ¢Ng; = Z 0;q;
=1 i=1 = (9.14)

Onde¢i* sdo os modos de C-B ortogonalizados.

Para considerar a flexibilidade estrutural, é ingte assumir como pequena a
deformacédo linear relativa de um corpo ao refemnlmcal, ao passo que esse
referencial pode sofrer movimentos grandes e m&aides. Para ilustrar a aplicacdo da
flexibilidade modal em ferramenta de MBS (Equac®&sa 9.14), a figura 9.2 mostra
um ponto P genérico em um corpo flexivel B qualgéeposicdo de P é relativa ao
sistema de coordenadas local B e ao referenciaiahés.
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Figura 9-2 - Vetor posi¢éo do ponto P’ no corpo fidvel apds a deformacgéo

A localizacéo instantanea de um ponto, conectadu aé P’ no corpo flexivel

(relativa aos referenciais local B e inercial Gjiaéla pela Equacao 9.15.

i) = (i s, )+
(9.15)
Sendo fi} o vetor posicado da origem do sistema global abéigem do corpo
B; {Sp} o vetor posicdo do ponto P em relacdo @em do corpo; e {xp} o vetor da

deformacéo translacional do ponto P da posicaalefimmada até a deformada.

O vetor deformacéo {xp} € encontrado através deegugsicdo modal, como

indica a

Equacéo 9.16, a qual é andloga a Equacao 9.1.

{'TP} B [g)]p {‘]'}

(9.16)

Onde {xp} € uma parte da matriz modal, correspondente ao @&dislacional
do ponto P. A dimensao de é 3nxonden é o niumero de modos. As coordenadas
modais qi, i = 1..n, sdo coordenadas generalizadas do cdigpdvel. Esse
procedimento, para calculo do vetor deformacdoge st aplicado em todos os GDL

do corpo flexivel.

As coordenadas modacs podem ser adicionadas ao vetor de coordenadas
generalizadas, formando o vetor de coordenadasamaelas do corpo flexivel. Tal

vetor é definido conforme a Equacgéo 9.17.

E_:{.T y z 0 8 v qL(le..,n}}-T

(9.17)
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Ondex, vy, z, @, & e y sdo os GDL translacionais e rotacionaisgieas

coordenadas modais.

De forma analoga aos corpos rigidos, as posic@etoeidades (translacdo) e
as orientacbes e velocidades angulares (rotacd®)GIaL do corpo flexivel séo
definidas. A partir da abordagem de Lagrange, mdoiinal da equacao diferencial de
movimento de um corpo flexivel, em termos das simsdenadas generalizadas, é

descrita pela Equagéo 9.31:

Sendo,

§,& e - Coordenadas generalizadas do corpo flexivel & siesivadas no

tempo
F,- Forca gravitacional generalizada

Q - Forcas generalizadas aplicadas
Y - Equac0bes algébricas de restricao
JL - Multiplicadores de Lagrange para as restricoes

[M] - Matriz de massa generalizada do corpo flexivel

~

[M] - Derivada no tempo da matriz de massa de coepdvi|
[K] - Matriz de rigidez generalizada

[D] - Matriz de amortecimento modal

oM : : . . .
[a_g] - Derivada parcial da matriz de massa com respsittbordenadas generalizadas

do corpo flexivel



9.2 ROTINA EM MATHEMATICA PARA

ESPACO DE ESTADO

In[1]:=

In[2]:=

In[14]:=

In[16]:=

In[17]:=

In[18]:=

In[14]:=

In[20]:=

Inf21]:=

In[22]:=

In[23]:=

Inf24]:=

In[28]:=

In[26]:=

In[27]:=

In[28]:=

ClearA11["Global " «"]

H=1.15
M= 15
L1=0.2645+H

L2 = 0.2655+H
L61-1172

LG2 =L2/2
ml=0.1+M

m2 = 0.0464 » M
g=9.81
I1-1/12+ml«L1"2
I2-1/12+m2«L2"2

bl=10.5
b2 =0.3
L - Ec-Ep

¥1 = LG1 » Cos[TETA1[t]]

¥l = LG1+Sin[TETA1[t]]
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OBTENCAO DO SISTEMA EM

x¥2 = L1+ Cos[TETAL[t]] + LG2 » Cos [TETAL[t] + TETA2[t]]

¥2 = L1+ Sin[TETAL[t]] + LG2 » Sin[TETAL[t] + TETA2[t]]

vl = {({D[x1, t1}"2 + (D[¥l, £t1}"2}*.5

¥v2 = {({D[x2, t1}"2 + (D[¥2, £t1}"2}*.5

Ecl-mlsvl®2/2 +I1+D[TETAL[L], t]1"2/2

Ec? -m2 w2272+ 12+ (D[TETAL[t], t] + D[TETAZ[t], £]1}~2/2

Ec = Ecl + Ec2

Ep=ml+Gr¥l+m2nifry2

L = Ec - Ep

TT1 = D[D[L, TETA1 [t]1], t] - D[L, TETA1[t]] + b1« (TETA1",)[t]

TT2 = D[D[L, TETA2 [t]1], t] - D[L, TETA2[t]] + b2 « {(TETA2 ") [t]



In[29]:=

In[30]:=

In[31]:=

In[32]:=

In[33]:=

In[34]:=

In[36]:=

In[36]:=

In[37]:=

In[33]:=

In[39]:=

TETR1[t] = tetal

TETAL1'[t] = tetaldot

TETA1""[t] = tetaldotdot

TETR2[t] = teta2

TETA2'[t] = teta?dot

TETA2"'[t] = teta?dotdot

sistema=Solve[{TT1=T1,TT2=T2} ,{tetaldotdot ,teta?dotdot}]
xldot=tetaldotdot /. sistema

x2dot=tetaldotdotf. sistema

x3¥dot=tetaldot

xddot=tetaldot

59
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9.3 ROTINAEM MATLAB PARA CALCULO DAS FREQUENCIAS ANALITICAS
clear all;

H = 1.75; % patients height [m]

M = 75; % patients weight [kg]

L1 = 0.2645*H;

L2 = 0.2655*H;

dl =L1/2;

d2 = L2/2;

ml = 0.1*M;

m2 = 0.0465*M;

%Moments of inertia of the thin beams
11 = (1/3)*m1*L1*L1;

12 = (1/3)*m2*L2*L2;

g = 9.8; %gravity

syms w;

S = solve('(I11*12+m2*L2/242-m2/2*d2/ 2+ L 1A2) "W -
(M1*g*d1*12+m2*g*L 1¥12+m2*g*d2* 1+m2/2*g*d2*L 1/2)*w A2+ m1*m2*g 2*d1*d2+m2/2*g"2*d2
*L1=0');

W1=-((gH(11A2*d2/2*m2A2 - 2¥I1412*L1+d2*m2/2 - 2*11*12*d1+d2*m1*m2 + 2*I1*L1/2*d2/2*m2"3
+ 1272+ 1A24M202 + 252825 1*d 1M1 m2 + [2/2*d1A24mLA2 + 242*L1A3*d2*m2/3 +
2¥12*L1A2*d1*d2*M1*m2/2 - 4*|2*L1*L2/2*d2*m2A3 - 4% |2*L282*d1*d2*m1*m2/2 +
L1M*d2/24m2n4 + 4*L1/3*d273* M2/ + 4*L1/2*d1+d2/3M1* m2A3)N(1/2) + L1A2*d2*g*m272 +
12*L1*g*m2 + 12*d1*g*m1 + 11*d2*g*m2)/(- 25L1/2*d27 2*m2A2 + 2*12+L.2/2*m2 + 2*I1*12))\(1/2);

W2=-((L1/2*d2*g*m272 - g*(1172*d2/2*m2/2 - 24114124 1*d2*m2A2 - 2+ 1*2*d1*d2*m1*m2 +
21X L1A2%02/2*M213 + 12A25L1A2*m 272 + 2*12A2+L1*d1*m1*m2 + [2/2*d1°2*m172 +
2¥125L173%02* 23 + 2¥12*L172*d1*d2*m1*m272 - 4*12% L1*L272%d2*m2"3 -

442+ 2720 1*d2*M1*m2A2 + L1M*d2/25 20 + 4*L1A3*RA3*m20 4 +
4*L172*d1*d273*m1*m273)N(1/2) + 12*L1*g*m2 + 12*d1%g*m1 + 11*d2*g*m2)/(-

25 L1A2%0282*M212 + 2525272 m2 + 2*11*12))7(1/2);

W3=((gH(11/2*d2/2*m 272 - 21 1¥12*L1*d2* 272 - 25 1*12+d1%d2*m1*m2 + 25 1*L1/2*d2/2*m2"3
+ 1272411724 M272 + 252725 L1+ 1 M1 m2 + [2/2+d1724mLA2 + 242*L1A3*d2*m273 +
2¥12*L1A2*d1*d2*m1*m272 - 4*12*L1*L2/2*d2*m2A3 - 4% |2*L2/2*d1*d2*m1*m2/2 +
L1M*d2/24m2nd + 4*L1/3*d2A3* M2/ + 4*L172+d1+d2/3M1* m2A3)N(1/2) + L1A2*d2*g*m272 +
12*L1*g*m2 + 12*d1*g*m1 + 11*d2*g*m2)/(- 2*L1/2*d27 2*m2A2 + 2*12*L.2A2*m2 + 2*I1*12))M(1/2);

WA=((L1A2*d2*g* 272 - g*(11/2*d2/2*m2A2 - 2*I1#12*L1*d2*m2A2 - 2*11*12*d1*d2*m1*m2 +
2¥|1*L1A2*d2/2+M2A3 + 12725172+ m212 + 2*1282*L1*d1*m1*m2 + [2/2*d1/2*m1/2 +
2¥12*L1A3*d2* 243 + 2*12*L1A2*d1*d2*M1*m2A2 - 4*12* L1+L2A2*d2*m243 -
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4*12*L2/2*d1*d2*m1*m2/2 + L1M*d2/2*m2/4 + 4*L173*dR"3* M2~ +
4*L172*d1*d2/3*m1*m2/3)N(1/2) + 12*L1*g*m2 + [2*d1*g*ml + 11*d2*g*m2)/(-
2*L112*d2/2*m2/2 + 2*12*L2°2*m2 + 2*11*12))N(1/2);

f1=w1/2/pi

f2=w2/2/pi

f3=w3/2/pi

fA=w4/2/pi



9.4 ROTINA SCILAB —INTEGRACAO NUMERICA NAO LINEAR
Arquivo Sce:

clearall

/I Carregar a funcao que implementa o modelo matemao sistema
exe€"C:/Humberto/TFIll/Scilab/Sistema_amort_zero_torgeero.sci);
/[Definir a freqiéncia da senoide

w=0;

/I Definir a condicao inicial: (5 graus inclinado)

y0=[0;0;%pi;%pi/2];

/I Definir o vetor t de instantes de tempo:

t=0:0.0110;

/I Comando que realiza a simulacao numérica:
y=0dey0,t(1),t,list(f,entradal,entradaR

//Plotando o resultado

/ffigure(1);

/Iplot2d(t,y(1,:))

/IT=list("Oscilacao livre - Velocidade angular d@xa","Tempo t [s]","Tetaldot
[rad/s]");

IIxtitle(T(1),T(2),T(3));

11xgrid(2)

/ffigure(2);

/Iplot2d(t,y(2,3))

/IT=list("Oscilacao livre - Velocidade angular dawela","Tempo t [s]","Teta2dot
[rad/s]");

IIxtitle(T(1),T(2),T(3));

/1xgrid(2)

figure(3);

plot2dt,y(3,))

T=list("Oscilacao livre - Posicado angular da cqXBémpo t [s],"Tetal [rad]);
xtitle(T(1),T(2),T(3));

xgrid(2)

figure(4);

plot2dt,y(4,))

T=list("Oscilagéo livre - Posicdo angular da cangl&mpo t [s], Teta2 [rad]);
xtitle(T(1),T(2),T(3));

xgrid(2)

y_transy’;
csvWritdy_trans,"C:/Humberto/TFIlI/Scilab/saida_osc_livre_ortogoxal');
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Arquivo Sci:

/lfuncdes do sistema com torque zero (fator O plidéndo u e v) e sem amortecimento

function[ydot]=f(t,y, T1, T2)

ydot=[-((1L*(-1*T2(t)+0.000-y(2)+7.930% coqy(3)+y(4))-
0.37421Fy(1)*y(2)*sin(y(4))+0.37421¥y(1)* (y(1)+y(2))* sin(y(4))))/(0.2504160.37
421 codqy(4))))+(0.250416(-1.*(1.5315239999999999.748422 coqy(4))* (-
1*T2(t)+0.000-y(2)+7.930%F coqy(3)+y(4))-
0.37421*y(1)*y(2)*sin(y(4))+0.37421*y(1)* (y(1)+y(2))*sin(y(4)))+(0.250416-0.374
21T*coqy(4))* (-1 *T1(t)+0.00000y(1)+32.83 coqy(3))+7.930%F coqy(3)+y(4))-
0.37421*y(1)*y(2)*sin(y(4))-
0.37421*y(2)* (y(1)+y(2)*sin(y(4))))/((0.250416-0.37421 coqy(4))* (-
0.32080994092799990 .* cogy(4))+0.1400338725210008209Yy(4))"2));
-(1*(-1*(1.5315239999999999.748422 coqy(4))* (-
1*T2(t)+0.000-y(2)+7.930%F coqy(3)+y(4))-
0.37421*y(1)*y(2)*sin(y(4))+0.37421*y(1)* (y(1)+y(2))*sin(y(4)))+(0.2504160.374
211*coqy(4))* (-1.*T1(t)+0.00000y(1)+32.83 coqy(3))+7.930%F coqy(3)+y(4))-
0.37421%y(1)*y(2)*sin(y(4))-0.37421xy(2)* (y(1)+y(2))*sin(y(4))))/ (-
0.3208099409279999D * cogy(4))+0.1400338725210008204y(4))"2);y(1);y(2)]
endfunction

function[u]=entradalt)
u=sin(w*t)*0;
endfunction

function[v]=entrada®)
v=sin(w*t)*0;
endfunction



9.5 MODELO DO MECANISMO NO MOTION VIEW
U ]

Altair HyperWorks

Version : HWVERSION_12.0.115-HWDesktop_Apr 15 2004:21:34
Model : The Model

Customer ID :

Date : 05/12/14 12:15:33
W T
*BeginMDL( the_model, "The Model", "12.0.115-HWDdsk" )
*StandardInclude(FILE)
*SetCurrentSolverMode(MotionSolve)

*Point( p_qua, "Quadril")

*Point( p_joe, "Joelho")

*Point( p_pe, "Pe")

*Point( p_cox_cm, "Coxa CM")

*Point( p_can_cm, "Canela CM")

*DataSet( ds_0, "Dataset 0", def _ds_0)

*Body( b_cox, "Coxa", p_cox_cm, ,,, )

*Body( b_can, "Canela", p_can_cm,,,, )

*Graphic( gra_cox, "Coxa", CYLINDER, b_cox, p_quOINT, MODEL.p_joe, .075, gra_cox.r1, , 0.0,

CAPBOTH)
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*Graphic( gra_pel, "Pel", CYLINDER, b_can, p_jB&INT, MODEL.p_pe, .05, gra_pel.r1,, 0.0,

CAPBOTH)

*Graphic( gra_pe2, "Pe2", CYLINDER, b_can, p_Y&CTOR, MODEL.b_can.cm.yaxis, .05,

gra_pe2.rl, .25, 0.0, CAPBOTH)

*RevJoint( j_qua, "Quadril", B_Ground, b_cox, piagg VECTOR, MODEL.V_Global Z)
*RevJoint(j_joe, "Joelho", b_cox, b_can, p_j#&CTOR, MODEL.V_Global_Z)
*ActionOnlyForce( frc_t1, "T1", ROT, b_cox, p_qudODEL.Global_Frame)

*ActionReactionForce( frc_t2, "T2", ROT, MODEL.ban, b_cox, MODEL.p_joe,

MODEL.Global_Frame )

*Motion( mot_0, "Motion 0", JOINT, j_qua, ROT )



*Motion( mot_1, "Motion 1", JOINT, j_joe, ROT)

*Qutput( o_tetal, "Quadril", EXPR, “rtod((AZ({thenodel.b_cox.cm.idstring}))-
{the_model.ds_0O.real_tetal.value})’, ‘rtod(WZz(30@6Q))", 0", 0", 0", "0")

*Qutput( o_teta2, "Joelho", EXPR,
‘rtod((AZ({the_model.b_can.cm.idstring},{the_modgl.cox.cm.idstring}))-
{the_model.ds_0.real_teta2.value})",
rtod(WZ({the_model.b_can.cm.idstring},{the_modeldox.cm.idstring}))", 0", 0", 0%, "0")

*SetReal( DS_Gravity.jgrav, -0.81)

*SetReal( DS_Gravity.kgrav, 0)

*SetOption( DS_Units.op_length, "METER")

*SetPoint( p_joe, 0.46287®8(the_model.ds_0.real_tetal.value),

0.462875*SIN(the_model.ds_0.real_tetal.value))

*SetPoint( p_pe, 0.462876/§the_model.ds_0.real_tetal.value) +
0.464625*COS(the_model.ds_0.real_tetal.value+thdehus O.real teta2.value),
0.462875*SIN(the_model.ds_0.real _tetal.value) +
0.464625*SIN(the_model.ds_0.real tetal.value+thalahds O.real teta2.value))

*SetPoint( p_cox_cm, (the_magdefjua.x+the_model.p_joe.x)/2,
(the_model.p_qua.y+the_model.p_joe.y)/2)

*SetPoint( p_can_cm, (the_maagbe.x+the_model.p_pe.x)/2,
(the_model.p_joe.y+the_model.p_pe.y)/2)

*SetBodylnertia( b_cox, 7.9.133908, 0.133908)

*SetBodylnertia( b_can, 3.48.0626042, 0.0626042 )

*SetState( b_cox, true )

*Set( b_cox.usecm, true )
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*SetOrientation( b_cox.cm, TWREBES, XY, DXDYDZ, 0.0, 0.0, 1.0, DXDYDZ, 1.0, 0.0,
0.0)

*SetOrientation( b_cox.cm, TWRBS, XY, POINT, MODEL.p_joe, DXDYDZ, 1.0, 0.0,
0.0)

*Set( b_can.usecm, true)

*SetOrientation( b_can.cm, TWXBES, XY, POINT, MODEL.p_pe, DXDYDZ, 1.0, 0.0,
0.0)

*SetMotion( mot_0, VEL, LIN,)

*SetMotion( mot_1, VEL, LIN

*SetForce( frc_t2, LIN, , LJNLIN, 7.93087 )

*SetState( frc_t2, true )



*SetState( frc_t1, true )

*SetState( mot_1, false )

*SetState( mot_0, false )

*SetForce( frc_t1, LIN, , LJNLIN, 0)

*SetForce( frc_tl, LIN, , LINEXPR, 'STEP(TIME,0,0,.1,1)*0" )
*SetForce( frc_t2, LIN, , LINEXPR, 'STEP(TIME,0,0,.1,1)*0" )
*SetReal( ds_0.real_tetal, -90*P1/180/180 )

*SetOption( DS_MotionSolve_Simopts.analysis_type,"Transient" )
*SetReal( DS_MotionSolve_Simopts.end_time,50 )
*SetActiveAnalysis( NONE )
*DefineDataSet( def _ds_0)

*Real( real_tetal, "tetal")

*Real( real_teta2, "teta2")
*EndDefine()

*EndMDL()
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9.6 MODELO ELEMENTOS FINITOS MATLAB
clear all

D=2*0.0254; E=7e9; L=0.4629; rho=8000; A=(pi*D"2)/4
% 2 elementos

K=A*E/(L/2)*[1 -1 0;-1 2 -1;0 -1 1];

M=rho*(L/2)*A*[1/3 1/6 0;1/6 2/3 1/6;0 1/6 1/3];

disp('1);

W2e=sqrt(-eig(inv(M)*K));

W2e_ref=[0; 1*pi*sqrt(E/(rho*L"2)); 2*pi*sqrt(E/(rb*L"2))];
F2e=W2e/2/pi

Fe2_ref=W2e_ref/2/pi
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